LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ zhecon_3()

subroutine zhecon_3 ( character uplo,
integer n,
complex*16, dimension( lda, * ) a,
integer lda,
complex*16, dimension( * ) e,
integer, dimension( * ) ipiv,
double precision anorm,
double precision rcond,
complex*16, dimension( * ) work,
integer info )

ZHECON_3

Download ZHECON_3 + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!> ZHECON_3 estimates the reciprocal of the condition number (in the
!> 1-norm) of a complex Hermitian matrix A using the factorization
!> computed by ZHETRF_RK or ZHETRF_BK:
!>
!>    A = P*U*D*(U**H)*(P**T) or A = P*L*D*(L**H)*(P**T),
!>
!> where U (or L) is unit upper (or lower) triangular matrix,
!> U**H (or L**H) is the conjugate of U (or L), P is a permutation
!> matrix, P**T is the transpose of P, and D is Hermitian and block
!> diagonal with 1-by-1 and 2-by-2 diagonal blocks.
!>
!> An estimate is obtained for norm(inv(A)), and the reciprocal of the
!> condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).
!> This routine uses BLAS3 solver ZHETRS_3.
!> 
Parameters
[in]UPLO
!>          UPLO is CHARACTER*1
!>          Specifies whether the details of the factorization are
!>          stored as an upper or lower triangular matrix:
!>          = 'U':  Upper triangular, form is A = P*U*D*(U**H)*(P**T);
!>          = 'L':  Lower triangular, form is A = P*L*D*(L**H)*(P**T).
!> 
[in]N
!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.
!> 
[in]A
!>          A is COMPLEX*16 array, dimension (LDA,N)
!>          Diagonal of the block diagonal matrix D and factors U or L
!>          as computed by ZHETRF_RK and ZHETRF_BK:
!>            a) ONLY diagonal elements of the Hermitian block diagonal
!>               matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
!>               (superdiagonal (or subdiagonal) elements of D
!>                should be provided on entry in array E), and
!>            b) If UPLO = 'U': factor U in the superdiagonal part of A.
!>               If UPLO = 'L': factor L in the subdiagonal part of A.
!> 
[in]LDA
!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,N).
!> 
[in]E
!>          E is COMPLEX*16 array, dimension (N)
!>          On entry, contains the superdiagonal (or subdiagonal)
!>          elements of the Hermitian block diagonal matrix D
!>          with 1-by-1 or 2-by-2 diagonal blocks, where
!>          If UPLO = 'U': E(i) = D(i-1,i),i=2:N, E(1) not referenced;
!>          If UPLO = 'L': E(i) = D(i+1,i),i=1:N-1, E(N) not referenced.
!>
!>          NOTE: For 1-by-1 diagonal block D(k), where
!>          1 <= k <= N, the element E(k) is not referenced in both
!>          UPLO = 'U' or UPLO = 'L' cases.
!> 
[in]IPIV
!>          IPIV is INTEGER array, dimension (N)
!>          Details of the interchanges and the block structure of D
!>          as determined by ZHETRF_RK or ZHETRF_BK.
!> 
[in]ANORM
!>          ANORM is DOUBLE PRECISION
!>          The 1-norm of the original matrix A.
!> 
[out]RCOND
!>          RCOND is DOUBLE PRECISION
!>          The reciprocal of the condition number of the matrix A,
!>          computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an
!>          estimate of the 1-norm of inv(A) computed in this routine.
!> 
[out]WORK
!>          WORK is COMPLEX*16 array, dimension (2*N)
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
!>
!>  June 2017,  Igor Kozachenko,
!>                  Computer Science Division,
!>                  University of California, Berkeley
!>
!>  September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
!>                  School of Mathematics,
!>                  University of Manchester
!>
!> 

Definition at line 162 of file zhecon_3.f.

164*
165* -- LAPACK computational routine --
166* -- LAPACK is a software package provided by Univ. of Tennessee, --
167* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
168*
169* .. Scalar Arguments ..
170 CHARACTER UPLO
171 INTEGER INFO, LDA, N
172 DOUBLE PRECISION ANORM, RCOND
173* ..
174* .. Array Arguments ..
175 INTEGER IPIV( * )
176 COMPLEX*16 A( LDA, * ), E( * ), WORK( * )
177* ..
178*
179* =====================================================================
180*
181* .. Parameters ..
182 DOUBLE PRECISION ONE, ZERO
183 parameter( one = 1.0d+0, zero = 0.0d+0 )
184* ..
185* .. Local Scalars ..
186 LOGICAL UPPER
187 INTEGER I, KASE
188 DOUBLE PRECISION AINVNM
189* ..
190* .. Local Arrays ..
191 INTEGER ISAVE( 3 )
192* ..
193* .. External Functions ..
194 LOGICAL LSAME
195 EXTERNAL lsame
196* ..
197* .. External Subroutines ..
198 EXTERNAL zhetrs_3, zlacn2, xerbla
199* ..
200* .. Intrinsic Functions ..
201 INTRINSIC max
202* ..
203* .. Executable Statements ..
204*
205* Test the input parameters.
206*
207 info = 0
208 upper = lsame( uplo, 'U' )
209 IF( .NOT.upper .AND. .NOT.lsame( uplo, 'L' ) ) THEN
210 info = -1
211 ELSE IF( n.LT.0 ) THEN
212 info = -2
213 ELSE IF( lda.LT.max( 1, n ) ) THEN
214 info = -4
215 ELSE IF( anorm.LT.zero ) THEN
216 info = -7
217 END IF
218 IF( info.NE.0 ) THEN
219 CALL xerbla( 'ZHECON_3', -info )
220 RETURN
221 END IF
222*
223* Quick return if possible
224*
225 rcond = zero
226 IF( n.EQ.0 ) THEN
227 rcond = one
228 RETURN
229 ELSE IF( anorm.LE.zero ) THEN
230 RETURN
231 END IF
232*
233* Check that the diagonal matrix D is nonsingular.
234*
235 IF( upper ) THEN
236*
237* Upper triangular storage: examine D from bottom to top
238*
239 DO i = n, 1, -1
240 IF( ipiv( i ).GT.0 .AND. a( i, i ).EQ.zero )
241 $ RETURN
242 END DO
243 ELSE
244*
245* Lower triangular storage: examine D from top to bottom.
246*
247 DO i = 1, n
248 IF( ipiv( i ).GT.0 .AND. a( i, i ).EQ.zero )
249 $ RETURN
250 END DO
251 END IF
252*
253* Estimate the 1-norm of the inverse.
254*
255 kase = 0
256 30 CONTINUE
257 CALL zlacn2( n, work( n+1 ), work, ainvnm, kase, isave )
258 IF( kase.NE.0 ) THEN
259*
260* Multiply by inv(L*D*L**H) or inv(U*D*U**H).
261*
262 CALL zhetrs_3( uplo, n, 1, a, lda, e, ipiv, work, n, info )
263 GO TO 30
264 END IF
265*
266* Compute the estimate of the reciprocal condition number.
267*
268 IF( ainvnm.NE.zero )
269 $ rcond = ( one / ainvnm ) / anorm
270*
271 RETURN
272*
273* End of ZHECON_3
274*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine zhetrs_3(uplo, n, nrhs, a, lda, e, ipiv, b, ldb, info)
ZHETRS_3
Definition zhetrs_3.f:163
subroutine zlacn2(n, v, x, est, kase, isave)
ZLACN2 estimates the 1-norm of a square matrix, using reverse communication for evaluating matrix-vec...
Definition zlacn2.f:131
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
Here is the call graph for this function:
Here is the caller graph for this function: