LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
sorbdb4.f
Go to the documentation of this file.
1*> \brief \b SORBDB4
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> Download SORBDB4 + dependencies
9*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sorbdb4.f">
10*> [TGZ]</a>
11*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sorbdb4.f">
12*> [ZIP]</a>
13*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sorbdb4.f">
14*> [TXT]</a>
15*
16* Definition:
17* ===========
18*
19* SUBROUTINE SORBDB4( M, P, Q, X11, LDX11, X21, LDX21, THETA, PHI,
20* TAUP1, TAUP2, TAUQ1, PHANTOM, WORK, LWORK,
21* INFO )
22*
23* .. Scalar Arguments ..
24* INTEGER INFO, LWORK, M, P, Q, LDX11, LDX21
25* ..
26* .. Array Arguments ..
27* REAL PHI(*), THETA(*)
28* REAL PHANTOM(*), TAUP1(*), TAUP2(*), TAUQ1(*),
29* $ WORK(*), X11(LDX11,*), X21(LDX21,*)
30* ..
31*
32*
33*> \par Purpose:
34* =============
35*>
36*>\verbatim
37*>
38*> SORBDB4 simultaneously bidiagonalizes the blocks of a tall and skinny
39*> matrix X with orthonormal columns:
40*>
41*> [ B11 ]
42*> [ X11 ] [ P1 | ] [ 0 ]
43*> [-----] = [---------] [-----] Q1**T .
44*> [ X21 ] [ | P2 ] [ B21 ]
45*> [ 0 ]
46*>
47*> X11 is P-by-Q, and X21 is (M-P)-by-Q. M-Q must be no larger than P,
48*> M-P, or Q. Routines SORBDB1, SORBDB2, and SORBDB3 handle cases in
49*> which M-Q is not the minimum dimension.
50*>
51*> The orthogonal matrices P1, P2, and Q1 are P-by-P, (M-P)-by-(M-P),
52*> and (M-Q)-by-(M-Q), respectively. They are represented implicitly by
53*> Householder vectors.
54*>
55*> B11 and B12 are (M-Q)-by-(M-Q) bidiagonal matrices represented
56*> implicitly by angles THETA, PHI.
57*>
58*>\endverbatim
59*
60* Arguments:
61* ==========
62*
63*> \param[in] M
64*> \verbatim
65*> M is INTEGER
66*> The number of rows X11 plus the number of rows in X21.
67*> \endverbatim
68*>
69*> \param[in] P
70*> \verbatim
71*> P is INTEGER
72*> The number of rows in X11. 0 <= P <= M.
73*> \endverbatim
74*>
75*> \param[in] Q
76*> \verbatim
77*> Q is INTEGER
78*> The number of columns in X11 and X21. 0 <= Q <= M and
79*> M-Q <= min(P,M-P,Q).
80*> \endverbatim
81*>
82*> \param[in,out] X11
83*> \verbatim
84*> X11 is REAL array, dimension (LDX11,Q)
85*> On entry, the top block of the matrix X to be reduced. On
86*> exit, the columns of tril(X11) specify reflectors for P1 and
87*> the rows of triu(X11,1) specify reflectors for Q1.
88*> \endverbatim
89*>
90*> \param[in] LDX11
91*> \verbatim
92*> LDX11 is INTEGER
93*> The leading dimension of X11. LDX11 >= P.
94*> \endverbatim
95*>
96*> \param[in,out] X21
97*> \verbatim
98*> X21 is REAL array, dimension (LDX21,Q)
99*> On entry, the bottom block of the matrix X to be reduced. On
100*> exit, the columns of tril(X21) specify reflectors for P2.
101*> \endverbatim
102*>
103*> \param[in] LDX21
104*> \verbatim
105*> LDX21 is INTEGER
106*> The leading dimension of X21. LDX21 >= M-P.
107*> \endverbatim
108*>
109*> \param[out] THETA
110*> \verbatim
111*> THETA is REAL array, dimension (Q)
112*> The entries of the bidiagonal blocks B11, B21 are defined by
113*> THETA and PHI. See Further Details.
114*> \endverbatim
115*>
116*> \param[out] PHI
117*> \verbatim
118*> PHI is REAL array, dimension (Q-1)
119*> The entries of the bidiagonal blocks B11, B21 are defined by
120*> THETA and PHI. See Further Details.
121*> \endverbatim
122*>
123*> \param[out] TAUP1
124*> \verbatim
125*> TAUP1 is REAL array, dimension (M-Q)
126*> The scalar factors of the elementary reflectors that define
127*> P1.
128*> \endverbatim
129*>
130*> \param[out] TAUP2
131*> \verbatim
132*> TAUP2 is REAL array, dimension (M-Q)
133*> The scalar factors of the elementary reflectors that define
134*> P2.
135*> \endverbatim
136*>
137*> \param[out] TAUQ1
138*> \verbatim
139*> TAUQ1 is REAL array, dimension (Q)
140*> The scalar factors of the elementary reflectors that define
141*> Q1.
142*> \endverbatim
143*>
144*> \param[out] PHANTOM
145*> \verbatim
146*> PHANTOM is REAL array, dimension (M)
147*> The routine computes an M-by-1 column vector Y that is
148*> orthogonal to the columns of [ X11; X21 ]. PHANTOM(1:P) and
149*> PHANTOM(P+1:M) contain Householder vectors for Y(1:P) and
150*> Y(P+1:M), respectively.
151*> \endverbatim
152*>
153*> \param[out] WORK
154*> \verbatim
155*> WORK is REAL array, dimension (LWORK)
156*> \endverbatim
157*>
158*> \param[in] LWORK
159*> \verbatim
160*> LWORK is INTEGER
161*> The dimension of the array WORK. LWORK >= M-Q.
162*>
163*> If LWORK = -1, then a workspace query is assumed; the routine
164*> only calculates the optimal size of the WORK array, returns
165*> this value as the first entry of the WORK array, and no error
166*> message related to LWORK is issued by XERBLA.
167*> \endverbatim
168*>
169*> \param[out] INFO
170*> \verbatim
171*> INFO is INTEGER
172*> = 0: successful exit.
173*> < 0: if INFO = -i, the i-th argument had an illegal value.
174*> \endverbatim
175*>
176*
177* Authors:
178* ========
179*
180*> \author Univ. of Tennessee
181*> \author Univ. of California Berkeley
182*> \author Univ. of Colorado Denver
183*> \author NAG Ltd.
184*
185*> \ingroup unbdb4
186*
187*> \par Further Details:
188* =====================
189*>
190*> \verbatim
191*>
192*> The upper-bidiagonal blocks B11, B21 are represented implicitly by
193*> angles THETA(1), ..., THETA(Q) and PHI(1), ..., PHI(Q-1). Every entry
194*> in each bidiagonal band is a product of a sine or cosine of a THETA
195*> with a sine or cosine of a PHI. See [1] or SORCSD for details.
196*>
197*> P1, P2, and Q1 are represented as products of elementary reflectors.
198*> See SORCSD2BY1 for details on generating P1, P2, and Q1 using SORGQR
199*> and SORGLQ.
200*> \endverbatim
201*
202*> \par References:
203* ================
204*>
205*> [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
206*> Algorithms, 50(1):33-65, 2009.
207*>
208* =====================================================================
209 SUBROUTINE sorbdb4( M, P, Q, X11, LDX11, X21, LDX21, THETA,
210 $ PHI,
211 $ TAUP1, TAUP2, TAUQ1, PHANTOM, WORK, LWORK,
212 $ INFO )
213*
214* -- LAPACK computational routine --
215* -- LAPACK is a software package provided by Univ. of Tennessee, --
216* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
217*
218* .. Scalar Arguments ..
219 INTEGER INFO, LWORK, M, P, Q, LDX11, LDX21
220* ..
221* .. Array Arguments ..
222 REAL PHI(*), THETA(*)
223 REAL PHANTOM(*), TAUP1(*), TAUP2(*), TAUQ1(*),
224 $ WORK(*), X11(LDX11,*), X21(LDX21,*)
225* ..
226*
227* ====================================================================
228*
229* .. Parameters ..
230 REAL NEGONE, ZERO
231 PARAMETER ( NEGONE = -1.0e0, zero = 0.0e0 )
232* ..
233* .. Local Scalars ..
234 REAL C, S
235 INTEGER CHILDINFO, I, ILARF, IORBDB5, J, LLARF,
236 $ LORBDB5, LWORKMIN, LWORKOPT
237 LOGICAL LQUERY
238* ..
239* .. External Subroutines ..
240 EXTERNAL slarf1f, slarfgp, sorbdb5, srot, sscal,
241 $ xerbla
242* ..
243* .. External Functions ..
244 REAL SNRM2
245 EXTERNAL SNRM2
246* ..
247* .. Intrinsic Function ..
248 INTRINSIC atan2, cos, max, sin, sqrt
249* ..
250* .. Executable Statements ..
251*
252* Test input arguments
253*
254 info = 0
255 lquery = lwork .EQ. -1
256*
257 IF( m .LT. 0 ) THEN
258 info = -1
259 ELSE IF( p .LT. m-q .OR. m-p .LT. m-q ) THEN
260 info = -2
261 ELSE IF( q .LT. m-q .OR. q .GT. m ) THEN
262 info = -3
263 ELSE IF( ldx11 .LT. max( 1, p ) ) THEN
264 info = -5
265 ELSE IF( ldx21 .LT. max( 1, m-p ) ) THEN
266 info = -7
267 END IF
268*
269* Compute workspace
270*
271 IF( info .EQ. 0 ) THEN
272 ilarf = 2
273 llarf = max( q-1, p-1, m-p-1 )
274 iorbdb5 = 2
275 lorbdb5 = q
276 lworkopt = ilarf + llarf - 1
277 lworkopt = max( lworkopt, iorbdb5 + lorbdb5 - 1 )
278 lworkmin = lworkopt
279 work(1) = real( lworkopt )
280 IF( lwork .LT. lworkmin .AND. .NOT.lquery ) THEN
281 info = -14
282 END IF
283 END IF
284 IF( info .NE. 0 ) THEN
285 CALL xerbla( 'SORBDB4', -info )
286 RETURN
287 ELSE IF( lquery ) THEN
288 RETURN
289 END IF
290*
291* Reduce columns 1, ..., M-Q of X11 and X21
292*
293 DO i = 1, m-q
294*
295 IF( i .EQ. 1 ) THEN
296 DO j = 1, m
297 phantom(j) = zero
298 END DO
299 CALL sorbdb5( p, m-p, q, phantom(1), 1, phantom(p+1), 1,
300 $ x11, ldx11, x21, ldx21, work(iorbdb5),
301 $ lorbdb5, childinfo )
302 CALL sscal( p, negone, phantom(1), 1 )
303 CALL slarfgp( p, phantom(1), phantom(2), 1, taup1(1) )
304 CALL slarfgp( m-p, phantom(p+1), phantom(p+2), 1,
305 $ taup2(1) )
306 theta(i) = atan2( phantom(1), phantom(p+1) )
307 c = cos( theta(i) )
308 s = sin( theta(i) )
309 CALL slarf1f( 'L', p, q, phantom(1), 1, taup1(1), x11,
310 $ ldx11, work(ilarf) )
311 CALL slarf1f( 'L', m-p, q, phantom(p+1), 1, taup2(1),
312 $ x21, ldx21, work(ilarf) )
313 ELSE
314 CALL sorbdb5( p-i+1, m-p-i+1, q-i+1, x11(i,i-1), 1,
315 $ x21(i,i-1), 1, x11(i,i), ldx11, x21(i,i),
316 $ ldx21, work(iorbdb5), lorbdb5, childinfo )
317 CALL sscal( p-i+1, negone, x11(i,i-1), 1 )
318 CALL slarfgp( p-i+1, x11(i,i-1), x11(i+1,i-1), 1,
319 $ taup1(i) )
320 CALL slarfgp( m-p-i+1, x21(i,i-1), x21(i+1,i-1), 1,
321 $ taup2(i) )
322 theta(i) = atan2( x11(i,i-1), x21(i,i-1) )
323 c = cos( theta(i) )
324 s = sin( theta(i) )
325 CALL slarf1f( 'L', p-i+1, q-i+1, x11(i,i-1), 1, taup1(i),
326 $ x11(i,i), ldx11, work(ilarf) )
327 CALL slarf1f( 'L', m-p-i+1, q-i+1, x21(i,i-1), 1,
328 $ taup2(i), x21(i,i), ldx21, work(ilarf) )
329 END IF
330*
331 CALL srot( q-i+1, x11(i,i), ldx11, x21(i,i), ldx21, s, -c )
332 CALL slarfgp( q-i+1, x21(i,i), x21(i,i+1), ldx21, tauq1(i) )
333 c = x21(i,i)
334 CALL slarf1f( 'R', p-i, q-i+1, x21(i,i), ldx21, tauq1(i),
335 $ x11(i+1,i), ldx11, work(ilarf) )
336 CALL slarf1f( 'R', m-p-i, q-i+1, x21(i,i), ldx21, tauq1(i),
337 $ x21(i+1,i), ldx21, work(ilarf) )
338 IF( i .LT. m-q ) THEN
339 s = sqrt( snrm2( p-i, x11(i+1,i), 1 )**2
340 $ + snrm2( m-p-i, x21(i+1,i), 1 )**2 )
341 phi(i) = atan2( s, c )
342 END IF
343*
344 END DO
345*
346* Reduce the bottom-right portion of X11 to [ I 0 ]
347*
348 DO i = m - q + 1, p
349 CALL slarfgp( q-i+1, x11(i,i), x11(i,i+1), ldx11, tauq1(i) )
350 CALL slarf1f( 'R', p-i, q-i+1, x11(i,i), ldx11, tauq1(i),
351 $ x11(i+1,i), ldx11, work(ilarf) )
352 CALL slarf1f( 'R', q-p, q-i+1, x11(i,i), ldx11, tauq1(i),
353 $ x21(m-q+1,i), ldx21, work(ilarf) )
354 END DO
355*
356* Reduce the bottom-right portion of X21 to [ 0 I ]
357*
358 DO i = p + 1, q
359 CALL slarfgp( q-i+1, x21(m-q+i-p,i), x21(m-q+i-p,i+1),
360 $ ldx21,
361 $ tauq1(i) )
362 CALL slarf1f( 'R', q-i, q-i+1, x21(m-q+i-p,i), ldx21,
363 $ tauq1(i), x21(m-q+i-p+1,i), ldx21,
364 $ work(ilarf) )
365 END DO
366*
367 RETURN
368*
369* End of SORBDB4
370*
371 END
372
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine slarfgp(n, alpha, x, incx, tau)
SLARFGP generates an elementary reflector (Householder matrix) with non-negative beta.
Definition slarfgp.f:102
subroutine srot(n, sx, incx, sy, incy, c, s)
SROT
Definition srot.f:92
subroutine sscal(n, sa, sx, incx)
SSCAL
Definition sscal.f:79
subroutine sorbdb4(m, p, q, x11, ldx11, x21, ldx21, theta, phi, taup1, taup2, tauq1, phantom, work, lwork, info)
SORBDB4
Definition sorbdb4.f:213
subroutine sorbdb5(m1, m2, n, x1, incx1, x2, incx2, q1, ldq1, q2, ldq2, work, lwork, info)
SORBDB5
Definition sorbdb5.f:155
subroutine slarf1f(side, m, n, v, incv, tau, c, ldc, work)
SLARF1F applies an elementary reflector to a general rectangular
Definition slarf1f.f:123