119 parameter( two = 2.0e+0, one = 1.0e+0, zero = 0.0e+0 )
123 REAL BETA, BIGNUM, EPS, SAVEALPHA, SMLNUM, XNORM
126 REAL SLAMCH, SLAPY2, SNRM2
127 EXTERNAL slamch, slapy2, snrm2
142 eps = slamch(
'Precision' )
143 xnorm = snrm2( n-1, x, incx )
145 IF( xnorm.LE.eps*abs(alpha) )
THEN
149 IF( alpha.GE.zero )
THEN
159 x( 1 + (j-1)*incx ) = 0
167 beta = sign( slapy2( alpha, xnorm ), alpha )
168 smlnum = slamch(
'S' ) / slamch(
'E' )
170 IF( abs( beta ).LT.smlnum )
THEN
174 bignum = one / smlnum
177 CALL sscal( n-1, bignum, x, incx )
180 IF( (abs( beta ).LT.smlnum) .AND. (knt .LT. 20) )
185 xnorm = snrm2( n-1, x, incx )
186 beta = sign( slapy2( alpha, xnorm ), alpha )
190 IF( beta.LT.zero )
THEN
194 alpha = xnorm * (xnorm/alpha)
199 IF ( abs(tau).LE.smlnum )
THEN
208 IF( savealpha.GE.zero )
THEN
213 x( 1 + (j-1)*incx ) = 0
222 CALL sscal( n-1, one / alpha, x, incx )
subroutine slarfgp(n, alpha, x, incx, tau)
SLARFGP generates an elementary reflector (Householder matrix) with non-negative beta.