LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
|
subroutine slarfgp | ( | integer | n, |
real | alpha, | ||
real, dimension( * ) | x, | ||
integer | incx, | ||
real | tau ) |
SLARFGP generates an elementary reflector (Householder matrix) with non-negative beta.
Download SLARFGP + dependencies [TGZ] [ZIP] [TXT]
!> !> SLARFGP generates a real elementary reflector H of order n, such !> that !> !> H * ( alpha ) = ( beta ), H**T * H = I. !> ( x ) ( 0 ) !> !> where alpha and beta are scalars, beta is non-negative, and x is !> an (n-1)-element real vector. H is represented in the form !> !> H = I - tau * ( 1 ) * ( 1 v**T ) , !> ( v ) !> !> where tau is a real scalar and v is a real (n-1)-element !> vector. !> !> If the elements of x are all zero, then tau = 0 and H is taken to be !> the unit matrix. !>
[in] | N | !> N is INTEGER !> The order of the elementary reflector. !> |
[in,out] | ALPHA | !> ALPHA is REAL !> On entry, the value alpha. !> On exit, it is overwritten with the value beta. !> |
[in,out] | X | !> X is REAL array, dimension !> (1+(N-2)*abs(INCX)) !> On entry, the vector x. !> On exit, it is overwritten with the vector v. !> |
[in] | INCX | !> INCX is INTEGER !> The increment between elements of X. INCX > 0. !> |
[out] | TAU | !> TAU is REAL !> The value tau. !> |
Definition at line 101 of file slarfgp.f.