556 SUBROUTINE sgbsvxx( FACT, TRANS, N, KL, KU, NRHS, AB, LDAB,
558 $ LDAFB, IPIV, EQUED, R, C, B, LDB, X, LDX,
559 $ RCOND, RPVGRW, BERR, N_ERR_BNDS,
560 $ ERR_BNDS_NORM, ERR_BNDS_COMP, NPARAMS, PARAMS,
561 $ WORK, IWORK, INFO )
568 CHARACTER EQUED, FACT, TRANS
569 INTEGER INFO, LDAB, LDAFB, LDB, LDX, N, NRHS, NPARAMS,
574 INTEGER IPIV( * ), IWORK( * )
575 REAL AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
576 $ x( ldx , * ),work( * )
577 REAL R( * ), C( * ), PARAMS( * ), BERR( * ),
578 $ ERR_BNDS_NORM( NRHS, * ),
579 $ err_bnds_comp( nrhs, * )
586 PARAMETER ( ZERO = 0.0e+0, one = 1.0e+0 )
587 INTEGER FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
588 INTEGER RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
589 INTEGER CMP_ERR_I, PIV_GROWTH_I
590 parameter( final_nrm_err_i = 1, final_cmp_err_i = 2,
592 parameter( rcond_i = 4, nrm_rcond_i = 5, nrm_err_i = 6 )
593 parameter( cmp_rcond_i = 7, cmp_err_i = 8,
597 LOGICAL COLEQU, EQUIL, NOFACT, NOTRAN, ROWEQU
598 INTEGER INFEQU, I, J, KL, KU
599 REAL AMAX, BIGNUM, COLCND, RCMAX, RCMIN,
605 REAL SLAMCH, SLA_GBRPVGRW
618 nofact = lsame( fact,
'N' )
619 equil = lsame( fact,
'E' )
620 notran = lsame( trans,
'N' )
621 smlnum = slamch(
'Safe minimum' )
622 bignum = one / smlnum
623 IF( nofact .OR. equil )
THEN
628 rowequ = lsame( equed,
'R' ) .OR. lsame( equed,
'B' )
629 colequ = lsame( equed,
'C' ) .OR. lsame( equed,
'B' )
640 IF( .NOT.nofact .AND. .NOT.equil .AND. .NOT.
641 $ lsame( fact,
'F' ) )
THEN
643 ELSE IF( .NOT.notran .AND. .NOT.lsame( trans,
'T' ) .AND. .NOT.
644 $ lsame( trans,
'C' ) )
THEN
646 ELSE IF( n.LT.0 )
THEN
648 ELSE IF( kl.LT.0 )
THEN
650 ELSE IF( ku.LT.0 )
THEN
652 ELSE IF( nrhs.LT.0 )
THEN
654 ELSE IF( ldab.LT.kl+ku+1 )
THEN
656 ELSE IF( ldafb.LT.2*kl+ku+1 )
THEN
658 ELSE IF( lsame( fact,
'F' ) .AND. .NOT.
659 $ ( rowequ .OR. colequ .OR. lsame( equed,
'N' ) ) )
THEN
666 rcmin = min( rcmin, r( j ) )
667 rcmax = max( rcmax, r( j ) )
669 IF( rcmin.LE.zero )
THEN
671 ELSE IF( n.GT.0 )
THEN
672 rowcnd = max( rcmin, smlnum ) / min( rcmax, bignum )
677 IF( colequ .AND. info.EQ.0 )
THEN
681 rcmin = min( rcmin, c( j ) )
682 rcmax = max( rcmax, c( j ) )
684 IF( rcmin.LE.zero )
THEN
686 ELSE IF( n.GT.0 )
THEN
687 colcnd = max( rcmin, smlnum ) / min( rcmax, bignum )
693 IF( ldb.LT.max( 1, n ) )
THEN
695 ELSE IF( ldx.LT.max( 1, n ) )
THEN
702 CALL xerbla(
'SGBSVXX', -info )
710 CALL sgbequb( n, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd,
712 IF( infequ.EQ.0 )
THEN
716 CALL slaqgb( n, n, kl, ku, ab, ldab, r, c, rowcnd,
719 rowequ = lsame( equed,
'R' ) .OR. lsame( equed,
'B' )
720 colequ = lsame( equed,
'C' ) .OR. lsame( equed,
'B' )
725 IF ( .NOT.rowequ )
THEN
730 IF ( .NOT.colequ )
THEN
740 IF( rowequ )
CALL slascl2(n, nrhs, r, b, ldb)
742 IF( colequ )
CALL slascl2(n, nrhs, c, b, ldb)
745 IF( nofact .OR. equil )
THEN
750 DO 30, i = kl+1, 2*kl+ku+1
751 afb( i, j ) = ab( i-kl, j )
754 CALL sgbtrf( n, n, kl, ku, afb, ldafb, ipiv, info )
764 rpvgrw = sla_gbrpvgrw( n, kl, ku, info, ab, ldab, afb,
772 rpvgrw = sla_gbrpvgrw( n, kl, ku, n, ab, ldab, afb, ldafb )
776 CALL slacpy(
'Full', n, nrhs, b, ldb, x, ldx )
777 CALL sgbtrs( trans, n, kl, ku, nrhs, afb, ldafb, ipiv, x, ldx,
783 CALL sgbrfsx( trans, equed, n, kl, ku, nrhs, ab, ldab, afb,
785 $ ipiv, r, c, b, ldb, x, ldx, rcond, berr,
786 $ n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params,
787 $ work, iwork, info )
791 IF ( colequ .AND. notran )
THEN
792 CALL slascl2 ( n, nrhs, c, x, ldx )
793 ELSE IF ( rowequ .AND. .NOT.notran )
THEN
794 CALL slascl2 ( n, nrhs, r, x, ldx )
subroutine sgbrfsx(trans, equed, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv, r, c, b, ldb, x, ldx, rcond, berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work, iwork, info)
SGBRFSX
subroutine sgbsvxx(fact, trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv, equed, r, c, b, ldb, x, ldx, rcond, rpvgrw, berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work, iwork, info)
SGBSVXX computes the solution to system of linear equations A * X = B for GB matrices