LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
zggsvp.f
Go to the documentation of this file.
1*> \brief \b ZGGSVP
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> Download ZGGSVP + dependencies
9*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zggsvp.f">
10*> [TGZ]</a>
11*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zggsvp.f">
12*> [ZIP]</a>
13*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zggsvp.f">
14*> [TXT]</a>
15*
16* Definition:
17* ===========
18*
19* SUBROUTINE ZGGSVP( JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB,
20* TOLA, TOLB, K, L, U, LDU, V, LDV, Q, LDQ,
21* IWORK, RWORK, TAU, WORK, INFO )
22*
23* .. Scalar Arguments ..
24* CHARACTER JOBQ, JOBU, JOBV
25* INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P
26* DOUBLE PRECISION TOLA, TOLB
27* ..
28* .. Array Arguments ..
29* INTEGER IWORK( * )
30* DOUBLE PRECISION RWORK( * )
31* COMPLEX*16 A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
32* $ TAU( * ), U( LDU, * ), V( LDV, * ), WORK( * )
33* ..
34*
35*
36*> \par Purpose:
37* =============
38*>
39*> \verbatim
40*>
41*> This routine is deprecated and has been replaced by routine ZGGSVP3.
42*>
43*> ZGGSVP computes unitary matrices U, V and Q such that
44*>
45*> N-K-L K L
46*> U**H*A*Q = K ( 0 A12 A13 ) if M-K-L >= 0;
47*> L ( 0 0 A23 )
48*> M-K-L ( 0 0 0 )
49*>
50*> N-K-L K L
51*> = K ( 0 A12 A13 ) if M-K-L < 0;
52*> M-K ( 0 0 A23 )
53*>
54*> N-K-L K L
55*> V**H*B*Q = L ( 0 0 B13 )
56*> P-L ( 0 0 0 )
57*>
58*> where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular
59*> upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0,
60*> otherwise A23 is (M-K)-by-L upper trapezoidal. K+L = the effective
61*> numerical rank of the (M+P)-by-N matrix (A**H,B**H)**H.
62*>
63*> This decomposition is the preprocessing step for computing the
64*> Generalized Singular Value Decomposition (GSVD), see subroutine
65*> ZGGSVD.
66*> \endverbatim
67*
68* Arguments:
69* ==========
70*
71*> \param[in] JOBU
72*> \verbatim
73*> JOBU is CHARACTER*1
74*> = 'U': Unitary matrix U is computed;
75*> = 'N': U is not computed.
76*> \endverbatim
77*>
78*> \param[in] JOBV
79*> \verbatim
80*> JOBV is CHARACTER*1
81*> = 'V': Unitary matrix V is computed;
82*> = 'N': V is not computed.
83*> \endverbatim
84*>
85*> \param[in] JOBQ
86*> \verbatim
87*> JOBQ is CHARACTER*1
88*> = 'Q': Unitary matrix Q is computed;
89*> = 'N': Q is not computed.
90*> \endverbatim
91*>
92*> \param[in] M
93*> \verbatim
94*> M is INTEGER
95*> The number of rows of the matrix A. M >= 0.
96*> \endverbatim
97*>
98*> \param[in] P
99*> \verbatim
100*> P is INTEGER
101*> The number of rows of the matrix B. P >= 0.
102*> \endverbatim
103*>
104*> \param[in] N
105*> \verbatim
106*> N is INTEGER
107*> The number of columns of the matrices A and B. N >= 0.
108*> \endverbatim
109*>
110*> \param[in,out] A
111*> \verbatim
112*> A is COMPLEX*16 array, dimension (LDA,N)
113*> On entry, the M-by-N matrix A.
114*> On exit, A contains the triangular (or trapezoidal) matrix
115*> described in the Purpose section.
116*> \endverbatim
117*>
118*> \param[in] LDA
119*> \verbatim
120*> LDA is INTEGER
121*> The leading dimension of the array A. LDA >= max(1,M).
122*> \endverbatim
123*>
124*> \param[in,out] B
125*> \verbatim
126*> B is COMPLEX*16 array, dimension (LDB,N)
127*> On entry, the P-by-N matrix B.
128*> On exit, B contains the triangular matrix described in
129*> the Purpose section.
130*> \endverbatim
131*>
132*> \param[in] LDB
133*> \verbatim
134*> LDB is INTEGER
135*> The leading dimension of the array B. LDB >= max(1,P).
136*> \endverbatim
137*>
138*> \param[in] TOLA
139*> \verbatim
140*> TOLA is DOUBLE PRECISION
141*> \endverbatim
142*>
143*> \param[in] TOLB
144*> \verbatim
145*> TOLB is DOUBLE PRECISION
146*>
147*> TOLA and TOLB are the thresholds to determine the effective
148*> numerical rank of matrix B and a subblock of A. Generally,
149*> they are set to
150*> TOLA = MAX(M,N)*norm(A)*MAZHEPS,
151*> TOLB = MAX(P,N)*norm(B)*MAZHEPS.
152*> The size of TOLA and TOLB may affect the size of backward
153*> errors of the decomposition.
154*> \endverbatim
155*>
156*> \param[out] K
157*> \verbatim
158*> K is INTEGER
159*> \endverbatim
160*>
161*> \param[out] L
162*> \verbatim
163*> L is INTEGER
164*>
165*> On exit, K and L specify the dimension of the subblocks
166*> described in Purpose section.
167*> K + L = effective numerical rank of (A**H,B**H)**H.
168*> \endverbatim
169*>
170*> \param[out] U
171*> \verbatim
172*> U is COMPLEX*16 array, dimension (LDU,M)
173*> If JOBU = 'U', U contains the unitary matrix U.
174*> If JOBU = 'N', U is not referenced.
175*> \endverbatim
176*>
177*> \param[in] LDU
178*> \verbatim
179*> LDU is INTEGER
180*> The leading dimension of the array U. LDU >= max(1,M) if
181*> JOBU = 'U'; LDU >= 1 otherwise.
182*> \endverbatim
183*>
184*> \param[out] V
185*> \verbatim
186*> V is COMPLEX*16 array, dimension (LDV,P)
187*> If JOBV = 'V', V contains the unitary matrix V.
188*> If JOBV = 'N', V is not referenced.
189*> \endverbatim
190*>
191*> \param[in] LDV
192*> \verbatim
193*> LDV is INTEGER
194*> The leading dimension of the array V. LDV >= max(1,P) if
195*> JOBV = 'V'; LDV >= 1 otherwise.
196*> \endverbatim
197*>
198*> \param[out] Q
199*> \verbatim
200*> Q is COMPLEX*16 array, dimension (LDQ,N)
201*> If JOBQ = 'Q', Q contains the unitary matrix Q.
202*> If JOBQ = 'N', Q is not referenced.
203*> \endverbatim
204*>
205*> \param[in] LDQ
206*> \verbatim
207*> LDQ is INTEGER
208*> The leading dimension of the array Q. LDQ >= max(1,N) if
209*> JOBQ = 'Q'; LDQ >= 1 otherwise.
210*> \endverbatim
211*>
212*> \param[out] IWORK
213*> \verbatim
214*> IWORK is INTEGER array, dimension (N)
215*> \endverbatim
216*>
217*> \param[out] RWORK
218*> \verbatim
219*> RWORK is DOUBLE PRECISION array, dimension (2*N)
220*> \endverbatim
221*>
222*> \param[out] TAU
223*> \verbatim
224*> TAU is COMPLEX*16 array, dimension (N)
225*> \endverbatim
226*>
227*> \param[out] WORK
228*> \verbatim
229*> WORK is COMPLEX*16 array, dimension (max(3*N,M,P))
230*> \endverbatim
231*>
232*> \param[out] INFO
233*> \verbatim
234*> INFO is INTEGER
235*> = 0: successful exit
236*> < 0: if INFO = -i, the i-th argument had an illegal value.
237*> \endverbatim
238*
239* Authors:
240* ========
241*
242*> \author Univ. of Tennessee
243*> \author Univ. of California Berkeley
244*> \author Univ. of Colorado Denver
245*> \author NAG Ltd.
246*
247*> \ingroup ggsvp
248*
249*> \par Further Details:
250* =====================
251*>
252*> \verbatim
253*>
254*> The subroutine uses LAPACK subroutine ZGEQPF for the QR factorization
255*> with column pivoting to detect the effective numerical rank of the
256*> a matrix. It may be replaced by a better rank determination strategy.
257*> \endverbatim
258*>
259* =====================================================================
260 SUBROUTINE zggsvp( JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB,
261 $ TOLA, TOLB, K, L, U, LDU, V, LDV, Q, LDQ,
262 $ IWORK, RWORK, TAU, WORK, INFO )
263*
264* -- LAPACK computational routine --
265* -- LAPACK is a software package provided by Univ. of Tennessee, --
266* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
267*
268* .. Scalar Arguments ..
269 CHARACTER JOBQ, JOBU, JOBV
270 INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P
271 DOUBLE PRECISION TOLA, TOLB
272* ..
273* .. Array Arguments ..
274 INTEGER IWORK( * )
275 DOUBLE PRECISION RWORK( * )
276 COMPLEX*16 A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
277 $ tau( * ), u( ldu, * ), v( ldv, * ), work( * )
278* ..
279*
280* =====================================================================
281*
282* .. Parameters ..
283 COMPLEX*16 CZERO, CONE
284 PARAMETER ( CZERO = ( 0.0d+0, 0.0d+0 ),
285 $ cone = ( 1.0d+0, 0.0d+0 ) )
286* ..
287* .. Local Scalars ..
288 LOGICAL FORWRD, WANTQ, WANTU, WANTV
289 INTEGER I, J
290 COMPLEX*16 T
291* ..
292* .. External Functions ..
293 LOGICAL LSAME
294 EXTERNAL LSAME
295* ..
296* .. External Subroutines ..
297 EXTERNAL xerbla, zgeqpf, zgeqr2, zgerq2, zlacpy, zlapmt,
299* ..
300* .. Intrinsic Functions ..
301 INTRINSIC abs, dble, dimag, max, min
302* ..
303* .. Statement Functions ..
304 DOUBLE PRECISION CABS1
305* ..
306* .. Statement Function definitions ..
307 cabs1( t ) = abs( dble( t ) ) + abs( dimag( t ) )
308* ..
309* .. Executable Statements ..
310*
311* Test the input parameters
312*
313 wantu = lsame( jobu, 'U' )
314 wantv = lsame( jobv, 'V' )
315 wantq = lsame( jobq, 'Q' )
316 forwrd = .true.
317*
318 info = 0
319 IF( .NOT.( wantu .OR. lsame( jobu, 'N' ) ) ) THEN
320 info = -1
321 ELSE IF( .NOT.( wantv .OR. lsame( jobv, 'N' ) ) ) THEN
322 info = -2
323 ELSE IF( .NOT.( wantq .OR. lsame( jobq, 'N' ) ) ) THEN
324 info = -3
325 ELSE IF( m.LT.0 ) THEN
326 info = -4
327 ELSE IF( p.LT.0 ) THEN
328 info = -5
329 ELSE IF( n.LT.0 ) THEN
330 info = -6
331 ELSE IF( lda.LT.max( 1, m ) ) THEN
332 info = -8
333 ELSE IF( ldb.LT.max( 1, p ) ) THEN
334 info = -10
335 ELSE IF( ldu.LT.1 .OR. ( wantu .AND. ldu.LT.m ) ) THEN
336 info = -16
337 ELSE IF( ldv.LT.1 .OR. ( wantv .AND. ldv.LT.p ) ) THEN
338 info = -18
339 ELSE IF( ldq.LT.1 .OR. ( wantq .AND. ldq.LT.n ) ) THEN
340 info = -20
341 END IF
342 IF( info.NE.0 ) THEN
343 CALL xerbla( 'ZGGSVP', -info )
344 RETURN
345 END IF
346*
347* QR with column pivoting of B: B*P = V*( S11 S12 )
348* ( 0 0 )
349*
350 DO 10 i = 1, n
351 iwork( i ) = 0
352 10 CONTINUE
353 CALL zgeqpf( p, n, b, ldb, iwork, tau, work, rwork, info )
354*
355* Update A := A*P
356*
357 CALL zlapmt( forwrd, m, n, a, lda, iwork )
358*
359* Determine the effective rank of matrix B.
360*
361 l = 0
362 DO 20 i = 1, min( p, n )
363 IF( cabs1( b( i, i ) ).GT.tolb )
364 $ l = l + 1
365 20 CONTINUE
366*
367 IF( wantv ) THEN
368*
369* Copy the details of V, and form V.
370*
371 CALL zlaset( 'Full', p, p, czero, czero, v, ldv )
372 IF( p.GT.1 )
373 $ CALL zlacpy( 'Lower', p-1, n, b( 2, 1 ), ldb, v( 2, 1 ),
374 $ ldv )
375 CALL zung2r( p, p, min( p, n ), v, ldv, tau, work, info )
376 END IF
377*
378* Clean up B
379*
380 DO 40 j = 1, l - 1
381 DO 30 i = j + 1, l
382 b( i, j ) = czero
383 30 CONTINUE
384 40 CONTINUE
385 IF( p.GT.l )
386 $ CALL zlaset( 'Full', p-l, n, czero, czero, b( l+1, 1 ),
387 $ ldb )
388*
389 IF( wantq ) THEN
390*
391* Set Q = I and Update Q := Q*P
392*
393 CALL zlaset( 'Full', n, n, czero, cone, q, ldq )
394 CALL zlapmt( forwrd, n, n, q, ldq, iwork )
395 END IF
396*
397 IF( p.GE.l .AND. n.NE.l ) THEN
398*
399* RQ factorization of ( S11 S12 ) = ( 0 S12 )*Z
400*
401 CALL zgerq2( l, n, b, ldb, tau, work, info )
402*
403* Update A := A*Z**H
404*
405 CALL zunmr2( 'Right', 'Conjugate transpose', m, n, l, b,
406 $ ldb, tau, a, lda, work, info )
407 IF( wantq ) THEN
408*
409* Update Q := Q*Z**H
410*
411 CALL zunmr2( 'Right', 'Conjugate transpose', n, n, l, b,
412 $ ldb, tau, q, ldq, work, info )
413 END IF
414*
415* Clean up B
416*
417 CALL zlaset( 'Full', l, n-l, czero, czero, b, ldb )
418 DO 60 j = n - l + 1, n
419 DO 50 i = j - n + l + 1, l
420 b( i, j ) = czero
421 50 CONTINUE
422 60 CONTINUE
423*
424 END IF
425*
426* Let N-L L
427* A = ( A11 A12 ) M,
428*
429* then the following does the complete QR decomposition of A11:
430*
431* A11 = U*( 0 T12 )*P1**H
432* ( 0 0 )
433*
434 DO 70 i = 1, n - l
435 iwork( i ) = 0
436 70 CONTINUE
437 CALL zgeqpf( m, n-l, a, lda, iwork, tau, work, rwork, info )
438*
439* Determine the effective rank of A11
440*
441 k = 0
442 DO 80 i = 1, min( m, n-l )
443 IF( cabs1( a( i, i ) ).GT.tola )
444 $ k = k + 1
445 80 CONTINUE
446*
447* Update A12 := U**H*A12, where A12 = A( 1:M, N-L+1:N )
448*
449 CALL zunm2r( 'Left', 'Conjugate transpose', m, l,
450 $ min( m, n-l ), a, lda, tau, a( 1, n-l+1 ), lda,
451 $ work, info )
452*
453 IF( wantu ) THEN
454*
455* Copy the details of U, and form U
456*
457 CALL zlaset( 'Full', m, m, czero, czero, u, ldu )
458 IF( m.GT.1 )
459 $ CALL zlacpy( 'Lower', m-1, n-l, a( 2, 1 ), lda,
460 $ u( 2, 1 ), ldu )
461 CALL zung2r( m, m, min( m, n-l ), u, ldu, tau, work,
462 $ info )
463 END IF
464*
465 IF( wantq ) THEN
466*
467* Update Q( 1:N, 1:N-L ) = Q( 1:N, 1:N-L )*P1
468*
469 CALL zlapmt( forwrd, n, n-l, q, ldq, iwork )
470 END IF
471*
472* Clean up A: set the strictly lower triangular part of
473* A(1:K, 1:K) = 0, and A( K+1:M, 1:N-L ) = 0.
474*
475 DO 100 j = 1, k - 1
476 DO 90 i = j + 1, k
477 a( i, j ) = czero
478 90 CONTINUE
479 100 CONTINUE
480 IF( m.GT.k )
481 $ CALL zlaset( 'Full', m-k, n-l, czero, czero, a( k+1, 1 ),
482 $ lda )
483*
484 IF( n-l.GT.k ) THEN
485*
486* RQ factorization of ( T11 T12 ) = ( 0 T12 )*Z1
487*
488 CALL zgerq2( k, n-l, a, lda, tau, work, info )
489*
490 IF( wantq ) THEN
491*
492* Update Q( 1:N,1:N-L ) = Q( 1:N,1:N-L )*Z1**H
493*
494 CALL zunmr2( 'Right', 'Conjugate transpose', n, n-l, k,
495 $ a, lda, tau, q, ldq, work, info )
496 END IF
497*
498* Clean up A
499*
500 CALL zlaset( 'Full', k, n-l-k, czero, czero, a, lda )
501 DO 120 j = n - l - k + 1, n - l
502 DO 110 i = j - n + l + k + 1, k
503 a( i, j ) = czero
504 110 CONTINUE
505 120 CONTINUE
506*
507 END IF
508*
509 IF( m.GT.k ) THEN
510*
511* QR factorization of A( K+1:M,N-L+1:N )
512*
513 CALL zgeqr2( m-k, l, a( k+1, n-l+1 ), lda, tau, work, info )
514*
515 IF( wantu ) THEN
516*
517* Update U(:,K+1:M) := U(:,K+1:M)*U1
518*
519 CALL zunm2r( 'Right', 'No transpose', m, m-k,
520 $ min( m-k, l ), a( k+1, n-l+1 ), lda, tau,
521 $ u( 1, k+1 ), ldu, work, info )
522 END IF
523*
524* Clean up
525*
526 DO 140 j = n - l + 1, n
527 DO 130 i = j - n + k + l + 1, m
528 a( i, j ) = czero
529 130 CONTINUE
530 140 CONTINUE
531*
532 END IF
533*
534 RETURN
535*
536* End of ZGGSVP
537*
538 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine zgeqr2(m, n, a, lda, tau, work, info)
ZGEQR2 computes the QR factorization of a general rectangular matrix using an unblocked algorithm.
Definition zgeqr2.f:128
subroutine zgerq2(m, n, a, lda, tau, work, info)
ZGERQ2 computes the RQ factorization of a general rectangular matrix using an unblocked algorithm.
Definition zgerq2.f:121
subroutine zlacpy(uplo, m, n, a, lda, b, ldb)
ZLACPY copies all or part of one two-dimensional array to another.
Definition zlacpy.f:101
subroutine zlapmt(forwrd, m, n, x, ldx, k)
ZLAPMT performs a forward or backward permutation of the columns of a matrix.
Definition zlapmt.f:102
subroutine zlaset(uplo, m, n, alpha, beta, a, lda)
ZLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition zlaset.f:104
subroutine zung2r(m, n, k, a, lda, tau, work, info)
ZUNG2R
Definition zung2r.f:112
subroutine zunm2r(side, trans, m, n, k, a, lda, tau, c, ldc, work, info)
ZUNM2R multiplies a general matrix by the unitary matrix from a QR factorization determined by cgeqrf...
Definition zunm2r.f:157
subroutine zunmr2(side, trans, m, n, k, a, lda, tau, c, ldc, work, info)
ZUNMR2 multiplies a general matrix by the unitary matrix from a RQ factorization determined by cgerqf...
Definition zunmr2.f:157
subroutine zgeqpf(m, n, a, lda, jpvt, tau, work, rwork, info)
ZGEQPF
Definition zgeqpf.f:146
subroutine zggsvp(jobu, jobv, jobq, m, p, n, a, lda, b, ldb, tola, tolb, k, l, u, ldu, v, ldv, q, ldq, iwork, rwork, tau, work, info)
ZGGSVP
Definition zggsvp.f:263