158
159
160
161
162
163
164 LOGICAL UPPER
165 DOUBLE PRECISION A1, A3, B1, B3, CSQ, CSU, CSV
166 COMPLEX*16 A2, B2, SNQ, SNU, SNV
167
168
169
170
171
172 DOUBLE PRECISION ZERO, ONE
173 parameter( zero = 0.0d+0, one = 1.0d+0 )
174
175
176 DOUBLE PRECISION A, AUA11, AUA12, AUA21, AUA22, AVB12, AVB11,
177 $ AVB21, AVB22, CSL, CSR, D, FB, FC, S1, S2,
178 $ SNL, SNR, UA11R, UA22R, VB11R, VB22R
179 COMPLEX*16 B, C, D1, R, T, UA11, UA12, UA21, UA22, VB11,
180 $ VB12, VB21, VB22
181
182
184
185
186 INTRINSIC abs, dble, dcmplx, dconjg, dimag
187
188
189 DOUBLE PRECISION ABS1
190
191
192 abs1( t ) = abs( dble( t ) ) + abs( dimag( t ) )
193
194
195
196 IF( upper ) THEN
197
198
199
200
201
202
203 a = a1*b3
204 d = a3*b1
205 b = a2*b1 - a1*b2
206 fb = abs( b )
207
208
209
210
211 d1 = one
212 IF( fb.NE.zero )
213 $ d1 = b / fb
214
215
216
217
218
219
220 CALL dlasv2( a, fb, d, s1, s2, snr, csr, snl, csl )
221
222 IF( abs( csl ).GE.abs( snl ) .OR. abs( csr ).GE.abs( snr ) )
223 $ THEN
224
225
226
227
228 ua11r = csl*a1
229 ua12 = csl*a2 + d1*snl*a3
230
231 vb11r = csr*b1
232 vb12 = csr*b2 + d1*snr*b3
233
234 aua12 = abs( csl )*abs1( a2 ) + abs( snl )*abs( a3 )
235 avb12 = abs( csr )*abs1( b2 ) + abs( snr )*abs( b3 )
236
237
238
239 IF( ( abs( ua11r )+abs1( ua12 ) ).EQ.zero ) THEN
240 CALL zlartg( -dcmplx( vb11r ), dconjg( vb12 ), csq, snq,
241 $ r )
242 ELSE IF( ( abs( vb11r )+abs1( vb12 ) ).EQ.zero ) THEN
243 CALL zlartg( -dcmplx( ua11r ), dconjg( ua12 ), csq, snq,
244 $ r )
245 ELSE IF( aua12 / ( abs( ua11r )+abs1( ua12 ) ).LE.avb12 /
246 $ ( abs( vb11r )+abs1( vb12 ) ) ) THEN
247 CALL zlartg( -dcmplx( ua11r ), dconjg( ua12 ), csq, snq,
248 $ r )
249 ELSE
250 CALL zlartg( -dcmplx( vb11r ), dconjg( vb12 ), csq, snq,
251 $ r )
252 END IF
253
254 csu = csl
255 snu = -d1*snl
256 csv = csr
257 snv = -d1*snr
258
259 ELSE
260
261
262
263
264 ua21 = -dconjg( d1 )*snl*a1
265 ua22 = -dconjg( d1 )*snl*a2 + csl*a3
266
267 vb21 = -dconjg( d1 )*snr*b1
268 vb22 = -dconjg( d1 )*snr*b2 + csr*b3
269
270 aua22 = abs( snl )*abs1( a2 ) + abs( csl )*abs( a3 )
271 avb22 = abs( snr )*abs1( b2 ) + abs( csr )*abs( b3 )
272
273
274
275 IF( ( abs1( ua21 )+abs1( ua22 ) ).EQ.zero ) THEN
276 CALL zlartg( -dconjg( vb21 ), dconjg( vb22 ), csq, snq,
277 $ r )
278 ELSE IF( ( abs1( vb21 )+abs( vb22 ) ).EQ.zero ) THEN
279 CALL zlartg( -dconjg( ua21 ), dconjg( ua22 ), csq, snq,
280 $ r )
281 ELSE IF( aua22 / ( abs1( ua21 )+abs1( ua22 ) ).LE.avb22 /
282 $ ( abs1( vb21 )+abs1( vb22 ) ) ) THEN
283 CALL zlartg( -dconjg( ua21 ), dconjg( ua22 ), csq, snq,
284 $ r )
285 ELSE
286 CALL zlartg( -dconjg( vb21 ), dconjg( vb22 ), csq, snq,
287 $ r )
288 END IF
289
290 csu = snl
291 snu = d1*csl
292 csv = snr
293 snv = d1*csr
294
295 END IF
296
297 ELSE
298
299
300
301
302
303
304 a = a1*b3
305 d = a3*b1
306 c = a2*b3 - a3*b2
307 fc = abs( c )
308
309
310
311
312 d1 = one
313 IF( fc.NE.zero )
314 $ d1 = c / fc
315
316
317
318
319
320
321 CALL dlasv2( a, fc, d, s1, s2, snr, csr, snl, csl )
322
323 IF( abs( csr ).GE.abs( snr ) .OR. abs( csl ).GE.abs( snl ) )
324 $ THEN
325
326
327
328
329 ua21 = -d1*snr*a1 + csr*a2
330 ua22r = csr*a3
331
332 vb21 = -d1*snl*b1 + csl*b2
333 vb22r = csl*b3
334
335 aua21 = abs( snr )*abs( a1 ) + abs( csr )*abs1( a2 )
336 avb21 = abs( snl )*abs( b1 ) + abs( csl )*abs1( b2 )
337
338
339
340 IF( ( abs1( ua21 )+abs( ua22r ) ).EQ.zero ) THEN
341 CALL zlartg( dcmplx( vb22r ), vb21, csq, snq, r )
342 ELSE IF( ( abs1( vb21 )+abs( vb22r ) ).EQ.zero ) THEN
343 CALL zlartg( dcmplx( ua22r ), ua21, csq, snq, r )
344 ELSE IF( aua21 / ( abs1( ua21 )+abs( ua22r ) ).LE.avb21 /
345 $ ( abs1( vb21 )+abs( vb22r ) ) ) THEN
346 CALL zlartg( dcmplx( ua22r ), ua21, csq, snq, r )
347 ELSE
348 CALL zlartg( dcmplx( vb22r ), vb21, csq, snq, r )
349 END IF
350
351 csu = csr
352 snu = -dconjg( d1 )*snr
353 csv = csl
354 snv = -dconjg( d1 )*snl
355
356 ELSE
357
358
359
360
361 ua11 = csr*a1 + dconjg( d1 )*snr*a2
362 ua12 = dconjg( d1 )*snr*a3
363
364 vb11 = csl*b1 + dconjg( d1 )*snl*b2
365 vb12 = dconjg( d1 )*snl*b3
366
367 aua11 = abs( csr )*abs( a1 ) + abs( snr )*abs1( a2 )
368 avb11 = abs( csl )*abs( b1 ) + abs( snl )*abs1( b2 )
369
370
371
372 IF( ( abs1( ua11 )+abs1( ua12 ) ).EQ.zero ) THEN
373 CALL zlartg( vb12, vb11, csq, snq, r )
374 ELSE IF( ( abs1( vb11 )+abs1( vb12 ) ).EQ.zero ) THEN
375 CALL zlartg( ua12, ua11, csq, snq, r )
376 ELSE IF( aua11 / ( abs1( ua11 )+abs1( ua12 ) ).LE.avb11 /
377 $ ( abs1( vb11 )+abs1( vb12 ) ) ) THEN
378 CALL zlartg( ua12, ua11, csq, snq, r )
379 ELSE
380 CALL zlartg( vb12, vb11, csq, snq, r )
381 END IF
382
383 csu = snr
384 snu = dconjg( d1 )*csr
385 csv = snl
386 snv = dconjg( d1 )*csl
387
388 END IF
389
390 END IF
391
392 RETURN
393
394
395
subroutine zlartg(f, g, c, s, r)
ZLARTG generates a plane rotation with real cosine and complex sine.
subroutine dlasv2(f, g, h, ssmin, ssmax, snr, csr, snl, csl)
DLASV2 computes the singular value decomposition of a 2-by-2 triangular matrix.