![]()  | 
  
    LAPACK 3.12.1
    
   LAPACK: Linear Algebra PACKage 
   | 
 
| subroutine zlartg | ( | complex(wp) | f, | 
| complex(wp) | g, | ||
| real(wp) | c, | ||
| complex(wp) | s, | ||
| complex(wp) | r ) | 
ZLARTG generates a plane rotation with real cosine and complex sine.
!>
!> ZLARTG generates a plane rotation so that
!>
!>    [  C         S  ] . [ F ]  =  [ R ]
!>    [ -conjg(S)  C  ]   [ G ]     [ 0 ]
!>
!> where C is real and C**2 + |S|**2 = 1.
!>
!> The mathematical formulas used for C and S are
!>
!>    sgn(x) = {  x / |x|,   x != 0
!>             {  1,         x  = 0
!>
!>    R = sgn(F) * sqrt(|F|**2 + |G|**2)
!>
!>    C = |F| / sqrt(|F|**2 + |G|**2)
!>
!>    S = sgn(F) * conjg(G) / sqrt(|F|**2 + |G|**2)
!>
!> Special conditions:
!>    If G=0, then C=1 and S=0.
!>    If F=0, then C=0 and S is chosen so that R is real.
!>
!> When F and G are real, the formulas simplify to C = F/R and
!> S = G/R, and the returned values of C, S, and R should be
!> identical to those returned by DLARTG.
!>
!> The algorithm used to compute these quantities incorporates scaling
!> to avoid overflow or underflow in computing the square root of the
!> sum of squares.
!>
!> This is the same routine ZROTG fom BLAS1, except that
!> F and G are unchanged on return.
!>
!> Below, wp=>dp stands for double precision from LA_CONSTANTS module.
!>  | [in] | F | !> F is COMPLEX(wp) !> The first component of vector to be rotated. !>  | 
| [in] | G | !> G is COMPLEX(wp) !> The second component of vector to be rotated. !>  | 
| [out] | C | !> C is REAL(wp) !> The cosine of the rotation. !>  | 
| [out] | S | !> S is COMPLEX(wp) !> The sine of the rotation. !>  | 
| [out] | R | !> R is COMPLEX(wp) !> The nonzero component of the rotated vector. !>  | 
!> !> Based on the algorithm from !> !> Anderson E. (2017) !> Algorithm 978: Safe Scaling in the Level 1 BLAS !> ACM Trans Math Softw 44:1--28 !> https://doi.org/10.1145/3061665 !> !>
Definition at line 115 of file zlartg.f90.