156 SUBROUTINE zlags2( UPPER, A1, A2, A3, B1, B2, B3, CSU, SNU, CSV,
165 DOUBLE PRECISION A1, A3, B1, B3, CSQ, CSU, CSV
166 COMPLEX*16 A2, B2, SNQ, SNU, SNV
172 DOUBLE PRECISION ZERO, ONE
173 parameter( zero = 0.0d+0, one = 1.0d+0 )
176 DOUBLE PRECISION A, AUA11, AUA12, AUA21, AUA22, AVB12, AVB11,
177 $ avb21, avb22, csl, csr, d, fb, fc, s1, s2,
178 $ snl, snr, ua11r, ua22r, vb11r, vb22r
179 COMPLEX*16 B, C, D1, R, T, UA11, UA12, UA21, UA22, VB11,
186 INTRINSIC abs, dble, dcmplx, dconjg, dimag
189 DOUBLE PRECISION ABS1
192 abs1( t ) = abs( dble( t ) ) + abs( dimag( t ) )
220 CALL dlasv2( a, fb, d, s1, s2, snr, csr, snl, csl )
222 IF( abs( csl ).GE.abs( snl ) .OR. abs( csr ).GE.abs( snr ) )
229 ua12 = csl*a2 + d1*snl*a3
232 vb12 = csr*b2 + d1*snr*b3
234 aua12 = abs( csl )*abs1( a2 ) + abs( snl )*abs( a3 )
235 avb12 = abs( csr )*abs1( b2 ) + abs( snr )*abs( b3 )
239 IF( ( abs( ua11r )+abs1( ua12 ) ).EQ.zero )
THEN
240 CALL zlartg( -dcmplx( vb11r ), dconjg( vb12 ), csq, snq,
242 ELSE IF( ( abs( vb11r )+abs1( vb12 ) ).EQ.zero )
THEN
243 CALL zlartg( -dcmplx( ua11r ), dconjg( ua12 ), csq, snq,
245 ELSE IF( aua12 / ( abs( ua11r )+abs1( ua12 ) ).LE.avb12 /
246 $ ( abs( vb11r )+abs1( vb12 ) ) )
THEN
247 CALL zlartg( -dcmplx( ua11r ), dconjg( ua12 ), csq, snq,
250 CALL zlartg( -dcmplx( vb11r ), dconjg( vb12 ), csq, snq,
264 ua21 = -dconjg( d1 )*snl*a1
265 ua22 = -dconjg( d1 )*snl*a2 + csl*a3
267 vb21 = -dconjg( d1 )*snr*b1
268 vb22 = -dconjg( d1 )*snr*b2 + csr*b3
270 aua22 = abs( snl )*abs1( a2 ) + abs( csl )*abs( a3 )
271 avb22 = abs( snr )*abs1( b2 ) + abs( csr )*abs( b3 )
275 IF( ( abs1( ua21 )+abs1( ua22 ) ).EQ.zero )
THEN
276 CALL zlartg( -dconjg( vb21 ), dconjg( vb22 ), csq, snq,
278 ELSE IF( ( abs1( vb21 )+abs( vb22 ) ).EQ.zero )
THEN
279 CALL zlartg( -dconjg( ua21 ), dconjg( ua22 ), csq, snq,
281 ELSE IF( aua22 / ( abs1( ua21 )+abs1( ua22 ) ).LE.avb22 /
282 $ ( abs1( vb21 )+abs1( vb22 ) ) )
THEN
283 CALL zlartg( -dconjg( ua21 ), dconjg( ua22 ), csq, snq,
286 CALL zlartg( -dconjg( vb21 ), dconjg( vb22 ), csq, snq,
321 CALL dlasv2( a, fc, d, s1, s2, snr, csr, snl, csl )
323 IF( abs( csr ).GE.abs( snr ) .OR. abs( csl ).GE.abs( snl ) )
329 ua21 = -d1*snr*a1 + csr*a2
332 vb21 = -d1*snl*b1 + csl*b2
335 aua21 = abs( snr )*abs( a1 ) + abs( csr )*abs1( a2 )
336 avb21 = abs( snl )*abs( b1 ) + abs( csl )*abs1( b2 )
340 IF( ( abs1( ua21 )+abs( ua22r ) ).EQ.zero )
THEN
341 CALL zlartg( dcmplx( vb22r ), vb21, csq, snq, r )
342 ELSE IF( ( abs1( vb21 )+abs( vb22r ) ).EQ.zero )
THEN
343 CALL zlartg( dcmplx( ua22r ), ua21, csq, snq, r )
344 ELSE IF( aua21 / ( abs1( ua21 )+abs( ua22r ) ).LE.avb21 /
345 $ ( abs1( vb21 )+abs( vb22r ) ) )
THEN
346 CALL zlartg( dcmplx( ua22r ), ua21, csq, snq, r )
348 CALL zlartg( dcmplx( vb22r ), vb21, csq, snq, r )
352 snu = -dconjg( d1 )*snr
354 snv = -dconjg( d1 )*snl
361 ua11 = csr*a1 + dconjg( d1 )*snr*a2
362 ua12 = dconjg( d1 )*snr*a3
364 vb11 = csl*b1 + dconjg( d1 )*snl*b2
365 vb12 = dconjg( d1 )*snl*b3
367 aua11 = abs( csr )*abs( a1 ) + abs( snr )*abs1( a2 )
368 avb11 = abs( csl )*abs( b1 ) + abs( snl )*abs1( b2 )
372 IF( ( abs1( ua11 )+abs1( ua12 ) ).EQ.zero )
THEN
373 CALL zlartg( vb12, vb11, csq, snq, r )
374 ELSE IF( ( abs1( vb11 )+abs1( vb12 ) ).EQ.zero )
THEN
375 CALL zlartg( ua12, ua11, csq, snq, r )
376 ELSE IF( aua11 / ( abs1( ua11 )+abs1( ua12 ) ).LE.avb11 /
377 $ ( abs1( vb11 )+abs1( vb12 ) ) )
THEN
378 CALL zlartg( ua12, ua11, csq, snq, r )
380 CALL zlartg( vb12, vb11, csq, snq, r )
384 snu = dconjg( d1 )*csr
386 snv = dconjg( d1 )*csl
subroutine zlags2(upper, a1, a2, a3, b1, b2, b3, csu, snu, csv, snv, csq, snq)
ZLAGS2
subroutine zlartg(f, g, c, s, r)
ZLARTG generates a plane rotation with real cosine and complex sine.
subroutine dlasv2(f, g, h, ssmin, ssmax, snr, csr, snl, csl)
DLASV2 computes the singular value decomposition of a 2-by-2 triangular matrix.