![]() |
LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
|
subroutine dlasv2 | ( | double precision | f, |
double precision | g, | ||
double precision | h, | ||
double precision | ssmin, | ||
double precision | ssmax, | ||
double precision | snr, | ||
double precision | csr, | ||
double precision | snl, | ||
double precision | csl ) |
DLASV2 computes the singular value decomposition of a 2-by-2 triangular matrix.
Download DLASV2 + dependencies [TGZ] [ZIP] [TXT]
!> !> DLASV2 computes the singular value decomposition of a 2-by-2 !> triangular matrix !> [ F G ] !> [ 0 H ]. !> On return, abs(SSMAX) is the larger singular value, abs(SSMIN) is the !> smaller singular value, and (CSL,SNL) and (CSR,SNR) are the left and !> right singular vectors for abs(SSMAX), giving the decomposition !> !> [ CSL SNL ] [ F G ] [ CSR -SNR ] = [ SSMAX 0 ] !> [-SNL CSL ] [ 0 H ] [ SNR CSR ] [ 0 SSMIN ]. !>
[in] | F | !> F is DOUBLE PRECISION !> The (1,1) element of the 2-by-2 matrix. !> |
[in] | G | !> G is DOUBLE PRECISION !> The (1,2) element of the 2-by-2 matrix. !> |
[in] | H | !> H is DOUBLE PRECISION !> The (2,2) element of the 2-by-2 matrix. !> |
[out] | SSMIN | !> SSMIN is DOUBLE PRECISION !> abs(SSMIN) is the smaller singular value. !> |
[out] | SSMAX | !> SSMAX is DOUBLE PRECISION !> abs(SSMAX) is the larger singular value. !> |
[out] | SNL | !> SNL is DOUBLE PRECISION !> |
[out] | CSL | !> CSL is DOUBLE PRECISION !> The vector (CSL, SNL) is a unit left singular vector for the !> singular value abs(SSMAX). !> |
[out] | SNR | !> SNR is DOUBLE PRECISION !> |
[out] | CSR | !> CSR is DOUBLE PRECISION !> The vector (CSR, SNR) is a unit right singular vector for the !> singular value abs(SSMAX). !> |
!> !> Any input parameter may be aliased with any output parameter. !> !> Barring over/underflow and assuming a guard digit in subtraction, all !> output quantities are correct to within a few units in the last !> place (ulps). !> !> In IEEE arithmetic, the code works correctly if one matrix element is !> infinite. !> !> Overflow will not occur unless the largest singular value itself !> overflows or is within a few ulps of overflow. !> !> Underflow is harmless if underflow is gradual. Otherwise, results !> may correspond to a matrix modified by perturbations of size near !> the underflow threshold. !>
Definition at line 133 of file dlasv2.f.