LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ sorbdb()

subroutine sorbdb ( character  trans,
character  signs,
integer  m,
integer  p,
integer  q,
real, dimension( ldx11, * )  x11,
integer  ldx11,
real, dimension( ldx12, * )  x12,
integer  ldx12,
real, dimension( ldx21, * )  x21,
integer  ldx21,
real, dimension( ldx22, * )  x22,
integer  ldx22,
real, dimension( * )  theta,
real, dimension( * )  phi,
real, dimension( * )  taup1,
real, dimension( * )  taup2,
real, dimension( * )  tauq1,
real, dimension( * )  tauq2,
real, dimension( * )  work,
integer  lwork,
integer  info 
)

SORBDB

Download SORBDB + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 SORBDB simultaneously bidiagonalizes the blocks of an M-by-M
 partitioned orthogonal matrix X:

                                 [ B11 | B12 0  0 ]
     [ X11 | X12 ]   [ P1 |    ] [  0  |  0 -I  0 ] [ Q1 |    ]**T
 X = [-----------] = [---------] [----------------] [---------]   .
     [ X21 | X22 ]   [    | P2 ] [ B21 | B22 0  0 ] [    | Q2 ]
                                 [  0  |  0  0  I ]

 X11 is P-by-Q. Q must be no larger than P, M-P, or M-Q. (If this is
 not the case, then X must be transposed and/or permuted. This can be
 done in constant time using the TRANS and SIGNS options. See SORCSD
 for details.)

 The orthogonal matrices P1, P2, Q1, and Q2 are P-by-P, (M-P)-by-
 (M-P), Q-by-Q, and (M-Q)-by-(M-Q), respectively. They are
 represented implicitly by Householder vectors.

 B11, B12, B21, and B22 are Q-by-Q bidiagonal matrices represented
 implicitly by angles THETA, PHI.
Parameters
[in]TRANS
          TRANS is CHARACTER
          = 'T':      X, U1, U2, V1T, and V2T are stored in row-major
                      order;
          otherwise:  X, U1, U2, V1T, and V2T are stored in column-
                      major order.
[in]SIGNS
          SIGNS is CHARACTER
          = 'O':      The lower-left block is made nonpositive (the
                      "other" convention);
          otherwise:  The upper-right block is made nonpositive (the
                      "default" convention).
[in]M
          M is INTEGER
          The number of rows and columns in X.
[in]P
          P is INTEGER
          The number of rows in X11 and X12. 0 <= P <= M.
[in]Q
          Q is INTEGER
          The number of columns in X11 and X21. 0 <= Q <=
          MIN(P,M-P,M-Q).
[in,out]X11
          X11 is REAL array, dimension (LDX11,Q)
          On entry, the top-left block of the orthogonal matrix to be
          reduced. On exit, the form depends on TRANS:
          If TRANS = 'N', then
             the columns of tril(X11) specify reflectors for P1,
             the rows of triu(X11,1) specify reflectors for Q1;
          else TRANS = 'T', and
             the rows of triu(X11) specify reflectors for P1,
             the columns of tril(X11,-1) specify reflectors for Q1.
[in]LDX11
          LDX11 is INTEGER
          The leading dimension of X11. If TRANS = 'N', then LDX11 >=
          P; else LDX11 >= Q.
[in,out]X12
          X12 is REAL array, dimension (LDX12,M-Q)
          On entry, the top-right block of the orthogonal matrix to
          be reduced. On exit, the form depends on TRANS:
          If TRANS = 'N', then
             the rows of triu(X12) specify the first P reflectors for
             Q2;
          else TRANS = 'T', and
             the columns of tril(X12) specify the first P reflectors
             for Q2.
[in]LDX12
          LDX12 is INTEGER
          The leading dimension of X12. If TRANS = 'N', then LDX12 >=
          P; else LDX11 >= M-Q.
[in,out]X21
          X21 is REAL array, dimension (LDX21,Q)
          On entry, the bottom-left block of the orthogonal matrix to
          be reduced. On exit, the form depends on TRANS:
          If TRANS = 'N', then
             the columns of tril(X21) specify reflectors for P2;
          else TRANS = 'T', and
             the rows of triu(X21) specify reflectors for P2.
[in]LDX21
          LDX21 is INTEGER
          The leading dimension of X21. If TRANS = 'N', then LDX21 >=
          M-P; else LDX21 >= Q.
[in,out]X22
          X22 is REAL array, dimension (LDX22,M-Q)
          On entry, the bottom-right block of the orthogonal matrix to
          be reduced. On exit, the form depends on TRANS:
          If TRANS = 'N', then
             the rows of triu(X22(Q+1:M-P,P+1:M-Q)) specify the last
             M-P-Q reflectors for Q2,
          else TRANS = 'T', and
             the columns of tril(X22(P+1:M-Q,Q+1:M-P)) specify the last
             M-P-Q reflectors for P2.
[in]LDX22
          LDX22 is INTEGER
          The leading dimension of X22. If TRANS = 'N', then LDX22 >=
          M-P; else LDX22 >= M-Q.
[out]THETA
          THETA is REAL array, dimension (Q)
          The entries of the bidiagonal blocks B11, B12, B21, B22 can
          be computed from the angles THETA and PHI. See Further
          Details.
[out]PHI
          PHI is REAL array, dimension (Q-1)
          The entries of the bidiagonal blocks B11, B12, B21, B22 can
          be computed from the angles THETA and PHI. See Further
          Details.
[out]TAUP1
          TAUP1 is REAL array, dimension (P)
          The scalar factors of the elementary reflectors that define
          P1.
[out]TAUP2
          TAUP2 is REAL array, dimension (M-P)
          The scalar factors of the elementary reflectors that define
          P2.
[out]TAUQ1
          TAUQ1 is REAL array, dimension (Q)
          The scalar factors of the elementary reflectors that define
          Q1.
[out]TAUQ2
          TAUQ2 is REAL array, dimension (M-Q)
          The scalar factors of the elementary reflectors that define
          Q2.
[out]WORK
          WORK is REAL array, dimension (LWORK)
[in]LWORK
          LWORK is INTEGER
          The dimension of the array WORK. LWORK >= M-Q.

          If LWORK = -1, then a workspace query is assumed; the routine
          only calculates the optimal size of the WORK array, returns
          this value as the first entry of the WORK array, and no error
          message related to LWORK is issued by XERBLA.
[out]INFO
          INFO is INTEGER
          = 0:  successful exit.
          < 0:  if INFO = -i, the i-th argument had an illegal value.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
  The bidiagonal blocks B11, B12, B21, and B22 are represented
  implicitly by angles THETA(1), ..., THETA(Q) and PHI(1), ...,
  PHI(Q-1). B11 and B21 are upper bidiagonal, while B21 and B22 are
  lower bidiagonal. Every entry in each bidiagonal band is a product
  of a sine or cosine of a THETA with a sine or cosine of a PHI. See
  [1] or SORCSD for details.

  P1, P2, Q1, and Q2 are represented as products of elementary
  reflectors. See SORCSD for details on generating P1, P2, Q1, and Q2
  using SORGQR and SORGLQ.
References:
[1] Brian D. Sutton. Computing the complete CS decomposition. Numer. Algorithms, 50(1):33-65, 2009.

Definition at line 284 of file sorbdb.f.

287*
288* -- LAPACK computational routine --
289* -- LAPACK is a software package provided by Univ. of Tennessee, --
290* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
291*
292* .. Scalar Arguments ..
293 CHARACTER SIGNS, TRANS
294 INTEGER INFO, LDX11, LDX12, LDX21, LDX22, LWORK, M, P,
295 $ Q
296* ..
297* .. Array Arguments ..
298 REAL PHI( * ), THETA( * )
299 REAL TAUP1( * ), TAUP2( * ), TAUQ1( * ), TAUQ2( * ),
300 $ WORK( * ), X11( LDX11, * ), X12( LDX12, * ),
301 $ X21( LDX21, * ), X22( LDX22, * )
302* ..
303*
304* ====================================================================
305*
306* .. Parameters ..
307 REAL REALONE
308 parameter( realone = 1.0e0 )
309 REAL ONE
310 parameter( one = 1.0e0 )
311* ..
312* .. Local Scalars ..
313 LOGICAL COLMAJOR, LQUERY
314 INTEGER I, LWORKMIN, LWORKOPT
315 REAL Z1, Z2, Z3, Z4
316* ..
317* .. External Subroutines ..
318 EXTERNAL saxpy, slarf, slarfgp, sscal, xerbla
319* ..
320* .. External Functions ..
321 REAL SNRM2
322 LOGICAL LSAME
323 EXTERNAL snrm2, lsame
324* ..
325* .. Intrinsic Functions
326 INTRINSIC atan2, cos, max, sin
327* ..
328* .. Executable Statements ..
329*
330* Test input arguments
331*
332 info = 0
333 colmajor = .NOT. lsame( trans, 'T' )
334 IF( .NOT. lsame( signs, 'O' ) ) THEN
335 z1 = realone
336 z2 = realone
337 z3 = realone
338 z4 = realone
339 ELSE
340 z1 = realone
341 z2 = -realone
342 z3 = realone
343 z4 = -realone
344 END IF
345 lquery = lwork .EQ. -1
346*
347 IF( m .LT. 0 ) THEN
348 info = -3
349 ELSE IF( p .LT. 0 .OR. p .GT. m ) THEN
350 info = -4
351 ELSE IF( q .LT. 0 .OR. q .GT. p .OR. q .GT. m-p .OR.
352 $ q .GT. m-q ) THEN
353 info = -5
354 ELSE IF( colmajor .AND. ldx11 .LT. max( 1, p ) ) THEN
355 info = -7
356 ELSE IF( .NOT.colmajor .AND. ldx11 .LT. max( 1, q ) ) THEN
357 info = -7
358 ELSE IF( colmajor .AND. ldx12 .LT. max( 1, p ) ) THEN
359 info = -9
360 ELSE IF( .NOT.colmajor .AND. ldx12 .LT. max( 1, m-q ) ) THEN
361 info = -9
362 ELSE IF( colmajor .AND. ldx21 .LT. max( 1, m-p ) ) THEN
363 info = -11
364 ELSE IF( .NOT.colmajor .AND. ldx21 .LT. max( 1, q ) ) THEN
365 info = -11
366 ELSE IF( colmajor .AND. ldx22 .LT. max( 1, m-p ) ) THEN
367 info = -13
368 ELSE IF( .NOT.colmajor .AND. ldx22 .LT. max( 1, m-q ) ) THEN
369 info = -13
370 END IF
371*
372* Compute workspace
373*
374 IF( info .EQ. 0 ) THEN
375 lworkopt = m - q
376 lworkmin = m - q
377 work(1) = lworkopt
378 IF( lwork .LT. lworkmin .AND. .NOT. lquery ) THEN
379 info = -21
380 END IF
381 END IF
382 IF( info .NE. 0 ) THEN
383 CALL xerbla( 'xORBDB', -info )
384 RETURN
385 ELSE IF( lquery ) THEN
386 RETURN
387 END IF
388*
389* Handle column-major and row-major separately
390*
391 IF( colmajor ) THEN
392*
393* Reduce columns 1, ..., Q of X11, X12, X21, and X22
394*
395 DO i = 1, q
396*
397 IF( i .EQ. 1 ) THEN
398 CALL sscal( p-i+1, z1, x11(i,i), 1 )
399 ELSE
400 CALL sscal( p-i+1, z1*cos(phi(i-1)), x11(i,i), 1 )
401 CALL saxpy( p-i+1, -z1*z3*z4*sin(phi(i-1)), x12(i,i-1),
402 $ 1, x11(i,i), 1 )
403 END IF
404 IF( i .EQ. 1 ) THEN
405 CALL sscal( m-p-i+1, z2, x21(i,i), 1 )
406 ELSE
407 CALL sscal( m-p-i+1, z2*cos(phi(i-1)), x21(i,i), 1 )
408 CALL saxpy( m-p-i+1, -z2*z3*z4*sin(phi(i-1)), x22(i,i-1),
409 $ 1, x21(i,i), 1 )
410 END IF
411*
412 theta(i) = atan2( snrm2( m-p-i+1, x21(i,i), 1 ),
413 $ snrm2( p-i+1, x11(i,i), 1 ) )
414*
415 IF( p .GT. i ) THEN
416 CALL slarfgp( p-i+1, x11(i,i), x11(i+1,i), 1, taup1(i) )
417 ELSE IF( p .EQ. i ) THEN
418 CALL slarfgp( p-i+1, x11(i,i), x11(i,i), 1, taup1(i) )
419 END IF
420 x11(i,i) = one
421 IF ( m-p .GT. i ) THEN
422 CALL slarfgp( m-p-i+1, x21(i,i), x21(i+1,i), 1,
423 $ taup2(i) )
424 ELSE IF ( m-p .EQ. i ) THEN
425 CALL slarfgp( m-p-i+1, x21(i,i), x21(i,i), 1, taup2(i) )
426 END IF
427 x21(i,i) = one
428*
429 IF ( q .GT. i ) THEN
430 CALL slarf( 'L', p-i+1, q-i, x11(i,i), 1, taup1(i),
431 $ x11(i,i+1), ldx11, work )
432 END IF
433 IF ( m-q+1 .GT. i ) THEN
434 CALL slarf( 'L', p-i+1, m-q-i+1, x11(i,i), 1, taup1(i),
435 $ x12(i,i), ldx12, work )
436 END IF
437 IF ( q .GT. i ) THEN
438 CALL slarf( 'L', m-p-i+1, q-i, x21(i,i), 1, taup2(i),
439 $ x21(i,i+1), ldx21, work )
440 END IF
441 IF ( m-q+1 .GT. i ) THEN
442 CALL slarf( 'L', m-p-i+1, m-q-i+1, x21(i,i), 1, taup2(i),
443 $ x22(i,i), ldx22, work )
444 END IF
445*
446 IF( i .LT. q ) THEN
447 CALL sscal( q-i, -z1*z3*sin(theta(i)), x11(i,i+1),
448 $ ldx11 )
449 CALL saxpy( q-i, z2*z3*cos(theta(i)), x21(i,i+1), ldx21,
450 $ x11(i,i+1), ldx11 )
451 END IF
452 CALL sscal( m-q-i+1, -z1*z4*sin(theta(i)), x12(i,i), ldx12 )
453 CALL saxpy( m-q-i+1, z2*z4*cos(theta(i)), x22(i,i), ldx22,
454 $ x12(i,i), ldx12 )
455*
456 IF( i .LT. q )
457 $ phi(i) = atan2( snrm2( q-i, x11(i,i+1), ldx11 ),
458 $ snrm2( m-q-i+1, x12(i,i), ldx12 ) )
459*
460 IF( i .LT. q ) THEN
461 IF ( q-i .EQ. 1 ) THEN
462 CALL slarfgp( q-i, x11(i,i+1), x11(i,i+1), ldx11,
463 $ tauq1(i) )
464 ELSE
465 CALL slarfgp( q-i, x11(i,i+1), x11(i,i+2), ldx11,
466 $ tauq1(i) )
467 END IF
468 x11(i,i+1) = one
469 END IF
470 IF ( q+i-1 .LT. m ) THEN
471 IF ( m-q .EQ. i ) THEN
472 CALL slarfgp( m-q-i+1, x12(i,i), x12(i,i), ldx12,
473 $ tauq2(i) )
474 ELSE
475 CALL slarfgp( m-q-i+1, x12(i,i), x12(i,i+1), ldx12,
476 $ tauq2(i) )
477 END IF
478 END IF
479 x12(i,i) = one
480*
481 IF( i .LT. q ) THEN
482 CALL slarf( 'R', p-i, q-i, x11(i,i+1), ldx11, tauq1(i),
483 $ x11(i+1,i+1), ldx11, work )
484 CALL slarf( 'R', m-p-i, q-i, x11(i,i+1), ldx11, tauq1(i),
485 $ x21(i+1,i+1), ldx21, work )
486 END IF
487 IF ( p .GT. i ) THEN
488 CALL slarf( 'R', p-i, m-q-i+1, x12(i,i), ldx12, tauq2(i),
489 $ x12(i+1,i), ldx12, work )
490 END IF
491 IF ( m-p .GT. i ) THEN
492 CALL slarf( 'R', m-p-i, m-q-i+1, x12(i,i), ldx12,
493 $ tauq2(i), x22(i+1,i), ldx22, work )
494 END IF
495*
496 END DO
497*
498* Reduce columns Q + 1, ..., P of X12, X22
499*
500 DO i = q + 1, p
501*
502 CALL sscal( m-q-i+1, -z1*z4, x12(i,i), ldx12 )
503 IF ( i .GE. m-q ) THEN
504 CALL slarfgp( m-q-i+1, x12(i,i), x12(i,i), ldx12,
505 $ tauq2(i) )
506 ELSE
507 CALL slarfgp( m-q-i+1, x12(i,i), x12(i,i+1), ldx12,
508 $ tauq2(i) )
509 END IF
510 x12(i,i) = one
511*
512 IF ( p .GT. i ) THEN
513 CALL slarf( 'R', p-i, m-q-i+1, x12(i,i), ldx12, tauq2(i),
514 $ x12(i+1,i), ldx12, work )
515 END IF
516 IF( m-p-q .GE. 1 )
517 $ CALL slarf( 'R', m-p-q, m-q-i+1, x12(i,i), ldx12,
518 $ tauq2(i), x22(q+1,i), ldx22, work )
519*
520 END DO
521*
522* Reduce columns P + 1, ..., M - Q of X12, X22
523*
524 DO i = 1, m - p - q
525*
526 CALL sscal( m-p-q-i+1, z2*z4, x22(q+i,p+i), ldx22 )
527 IF ( i .EQ. m-p-q ) THEN
528 CALL slarfgp( m-p-q-i+1, x22(q+i,p+i), x22(q+i,p+i),
529 $ ldx22, tauq2(p+i) )
530 ELSE
531 CALL slarfgp( m-p-q-i+1, x22(q+i,p+i), x22(q+i,p+i+1),
532 $ ldx22, tauq2(p+i) )
533 END IF
534 x22(q+i,p+i) = one
535 IF ( i .LT. m-p-q ) THEN
536 CALL slarf( 'R', m-p-q-i, m-p-q-i+1, x22(q+i,p+i), ldx22,
537 $ tauq2(p+i), x22(q+i+1,p+i), ldx22, work )
538 END IF
539*
540 END DO
541*
542 ELSE
543*
544* Reduce columns 1, ..., Q of X11, X12, X21, X22
545*
546 DO i = 1, q
547*
548 IF( i .EQ. 1 ) THEN
549 CALL sscal( p-i+1, z1, x11(i,i), ldx11 )
550 ELSE
551 CALL sscal( p-i+1, z1*cos(phi(i-1)), x11(i,i), ldx11 )
552 CALL saxpy( p-i+1, -z1*z3*z4*sin(phi(i-1)), x12(i-1,i),
553 $ ldx12, x11(i,i), ldx11 )
554 END IF
555 IF( i .EQ. 1 ) THEN
556 CALL sscal( m-p-i+1, z2, x21(i,i), ldx21 )
557 ELSE
558 CALL sscal( m-p-i+1, z2*cos(phi(i-1)), x21(i,i), ldx21 )
559 CALL saxpy( m-p-i+1, -z2*z3*z4*sin(phi(i-1)), x22(i-1,i),
560 $ ldx22, x21(i,i), ldx21 )
561 END IF
562*
563 theta(i) = atan2( snrm2( m-p-i+1, x21(i,i), ldx21 ),
564 $ snrm2( p-i+1, x11(i,i), ldx11 ) )
565*
566 CALL slarfgp( p-i+1, x11(i,i), x11(i,i+1), ldx11, taup1(i) )
567 x11(i,i) = one
568 IF ( i .EQ. m-p ) THEN
569 CALL slarfgp( m-p-i+1, x21(i,i), x21(i,i), ldx21,
570 $ taup2(i) )
571 ELSE
572 CALL slarfgp( m-p-i+1, x21(i,i), x21(i,i+1), ldx21,
573 $ taup2(i) )
574 END IF
575 x21(i,i) = one
576*
577 IF ( q .GT. i ) THEN
578 CALL slarf( 'R', q-i, p-i+1, x11(i,i), ldx11, taup1(i),
579 $ x11(i+1,i), ldx11, work )
580 END IF
581 IF ( m-q+1 .GT. i ) THEN
582 CALL slarf( 'R', m-q-i+1, p-i+1, x11(i,i), ldx11,
583 $ taup1(i), x12(i,i), ldx12, work )
584 END IF
585 IF ( q .GT. i ) THEN
586 CALL slarf( 'R', q-i, m-p-i+1, x21(i,i), ldx21, taup2(i),
587 $ x21(i+1,i), ldx21, work )
588 END IF
589 IF ( m-q+1 .GT. i ) THEN
590 CALL slarf( 'R', m-q-i+1, m-p-i+1, x21(i,i), ldx21,
591 $ taup2(i), x22(i,i), ldx22, work )
592 END IF
593*
594 IF( i .LT. q ) THEN
595 CALL sscal( q-i, -z1*z3*sin(theta(i)), x11(i+1,i), 1 )
596 CALL saxpy( q-i, z2*z3*cos(theta(i)), x21(i+1,i), 1,
597 $ x11(i+1,i), 1 )
598 END IF
599 CALL sscal( m-q-i+1, -z1*z4*sin(theta(i)), x12(i,i), 1 )
600 CALL saxpy( m-q-i+1, z2*z4*cos(theta(i)), x22(i,i), 1,
601 $ x12(i,i), 1 )
602*
603 IF( i .LT. q )
604 $ phi(i) = atan2( snrm2( q-i, x11(i+1,i), 1 ),
605 $ snrm2( m-q-i+1, x12(i,i), 1 ) )
606*
607 IF( i .LT. q ) THEN
608 IF ( q-i .EQ. 1) THEN
609 CALL slarfgp( q-i, x11(i+1,i), x11(i+1,i), 1,
610 $ tauq1(i) )
611 ELSE
612 CALL slarfgp( q-i, x11(i+1,i), x11(i+2,i), 1,
613 $ tauq1(i) )
614 END IF
615 x11(i+1,i) = one
616 END IF
617 IF ( m-q .GT. i ) THEN
618 CALL slarfgp( m-q-i+1, x12(i,i), x12(i+1,i), 1,
619 $ tauq2(i) )
620 ELSE
621 CALL slarfgp( m-q-i+1, x12(i,i), x12(i,i), 1,
622 $ tauq2(i) )
623 END IF
624 x12(i,i) = one
625*
626 IF( i .LT. q ) THEN
627 CALL slarf( 'L', q-i, p-i, x11(i+1,i), 1, tauq1(i),
628 $ x11(i+1,i+1), ldx11, work )
629 CALL slarf( 'L', q-i, m-p-i, x11(i+1,i), 1, tauq1(i),
630 $ x21(i+1,i+1), ldx21, work )
631 END IF
632 CALL slarf( 'L', m-q-i+1, p-i, x12(i,i), 1, tauq2(i),
633 $ x12(i,i+1), ldx12, work )
634 IF ( m-p-i .GT. 0 ) THEN
635 CALL slarf( 'L', m-q-i+1, m-p-i, x12(i,i), 1, tauq2(i),
636 $ x22(i,i+1), ldx22, work )
637 END IF
638*
639 END DO
640*
641* Reduce columns Q + 1, ..., P of X12, X22
642*
643 DO i = q + 1, p
644*
645 CALL sscal( m-q-i+1, -z1*z4, x12(i,i), 1 )
646 CALL slarfgp( m-q-i+1, x12(i,i), x12(i+1,i), 1, tauq2(i) )
647 x12(i,i) = one
648*
649 IF ( p .GT. i ) THEN
650 CALL slarf( 'L', m-q-i+1, p-i, x12(i,i), 1, tauq2(i),
651 $ x12(i,i+1), ldx12, work )
652 END IF
653 IF( m-p-q .GE. 1 )
654 $ CALL slarf( 'L', m-q-i+1, m-p-q, x12(i,i), 1, tauq2(i),
655 $ x22(i,q+1), ldx22, work )
656*
657 END DO
658*
659* Reduce columns P + 1, ..., M - Q of X12, X22
660*
661 DO i = 1, m - p - q
662*
663 CALL sscal( m-p-q-i+1, z2*z4, x22(p+i,q+i), 1 )
664 IF ( m-p-q .EQ. i ) THEN
665 CALL slarfgp( m-p-q-i+1, x22(p+i,q+i), x22(p+i,q+i), 1,
666 $ tauq2(p+i) )
667 x22(p+i,q+i) = one
668 ELSE
669 CALL slarfgp( m-p-q-i+1, x22(p+i,q+i), x22(p+i+1,q+i), 1,
670 $ tauq2(p+i) )
671 x22(p+i,q+i) = one
672 CALL slarf( 'L', m-p-q-i+1, m-p-q-i, x22(p+i,q+i), 1,
673 $ tauq2(p+i), x22(p+i,q+i+1), ldx22, work )
674 END IF
675*
676*
677 END DO
678*
679 END IF
680*
681 RETURN
682*
683* End of SORBDB
684*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine saxpy(n, sa, sx, incx, sy, incy)
SAXPY
Definition saxpy.f:89
subroutine slarf(side, m, n, v, incv, tau, c, ldc, work)
SLARF applies an elementary reflector to a general rectangular matrix.
Definition slarf.f:124
subroutine slarfgp(n, alpha, x, incx, tau)
SLARFGP generates an elementary reflector (Householder matrix) with non-negative beta.
Definition slarfgp.f:104
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
real(wp) function snrm2(n, x, incx)
SNRM2
Definition snrm2.f90:89
subroutine sscal(n, sa, sx, incx)
SSCAL
Definition sscal.f:79
Here is the call graph for this function:
Here is the caller graph for this function: