LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
sorbdb.f
Go to the documentation of this file.
1*> \brief \b SORBDB
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> Download SORBDB + dependencies
9*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sorbdb.f">
10*> [TGZ]</a>
11*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sorbdb.f">
12*> [ZIP]</a>
13*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sorbdb.f">
14*> [TXT]</a>
15*
16* Definition:
17* ===========
18*
19* SUBROUTINE SORBDB( TRANS, SIGNS, M, P, Q, X11, LDX11, X12, LDX12,
20* X21, LDX21, X22, LDX22, THETA, PHI, TAUP1,
21* TAUP2, TAUQ1, TAUQ2, WORK, LWORK, INFO )
22*
23* .. Scalar Arguments ..
24* CHARACTER SIGNS, TRANS
25* INTEGER INFO, LDX11, LDX12, LDX21, LDX22, LWORK, M, P,
26* $ Q
27* ..
28* .. Array Arguments ..
29* REAL PHI( * ), THETA( * )
30* REAL TAUP1( * ), TAUP2( * ), TAUQ1( * ), TAUQ2( * ),
31* $ WORK( * ), X11( LDX11, * ), X12( LDX12, * ),
32* $ X21( LDX21, * ), X22( LDX22, * )
33* ..
34*
35*
36*> \par Purpose:
37* =============
38*>
39*> \verbatim
40*>
41*> SORBDB simultaneously bidiagonalizes the blocks of an M-by-M
42*> partitioned orthogonal matrix X:
43*>
44*> [ B11 | B12 0 0 ]
45*> [ X11 | X12 ] [ P1 | ] [ 0 | 0 -I 0 ] [ Q1 | ]**T
46*> X = [-----------] = [---------] [----------------] [---------] .
47*> [ X21 | X22 ] [ | P2 ] [ B21 | B22 0 0 ] [ | Q2 ]
48*> [ 0 | 0 0 I ]
49*>
50*> X11 is P-by-Q. Q must be no larger than P, M-P, or M-Q. (If this is
51*> not the case, then X must be transposed and/or permuted. This can be
52*> done in constant time using the TRANS and SIGNS options. See SORCSD
53*> for details.)
54*>
55*> The orthogonal matrices P1, P2, Q1, and Q2 are P-by-P, (M-P)-by-
56*> (M-P), Q-by-Q, and (M-Q)-by-(M-Q), respectively. They are
57*> represented implicitly by Householder vectors.
58*>
59*> B11, B12, B21, and B22 are Q-by-Q bidiagonal matrices represented
60*> implicitly by angles THETA, PHI.
61*> \endverbatim
62*
63* Arguments:
64* ==========
65*
66*> \param[in] TRANS
67*> \verbatim
68*> TRANS is CHARACTER
69*> = 'T': X, U1, U2, V1T, and V2T are stored in row-major
70*> order;
71*> otherwise: X, U1, U2, V1T, and V2T are stored in column-
72*> major order.
73*> \endverbatim
74*>
75*> \param[in] SIGNS
76*> \verbatim
77*> SIGNS is CHARACTER
78*> = 'O': The lower-left block is made nonpositive (the
79*> "other" convention);
80*> otherwise: The upper-right block is made nonpositive (the
81*> "default" convention).
82*> \endverbatim
83*>
84*> \param[in] M
85*> \verbatim
86*> M is INTEGER
87*> The number of rows and columns in X.
88*> \endverbatim
89*>
90*> \param[in] P
91*> \verbatim
92*> P is INTEGER
93*> The number of rows in X11 and X12. 0 <= P <= M.
94*> \endverbatim
95*>
96*> \param[in] Q
97*> \verbatim
98*> Q is INTEGER
99*> The number of columns in X11 and X21. 0 <= Q <=
100*> MIN(P,M-P,M-Q).
101*> \endverbatim
102*>
103*> \param[in,out] X11
104*> \verbatim
105*> X11 is REAL array, dimension (LDX11,Q)
106*> On entry, the top-left block of the orthogonal matrix to be
107*> reduced. On exit, the form depends on TRANS:
108*> If TRANS = 'N', then
109*> the columns of tril(X11) specify reflectors for P1,
110*> the rows of triu(X11,1) specify reflectors for Q1;
111*> else TRANS = 'T', and
112*> the rows of triu(X11) specify reflectors for P1,
113*> the columns of tril(X11,-1) specify reflectors for Q1.
114*> \endverbatim
115*>
116*> \param[in] LDX11
117*> \verbatim
118*> LDX11 is INTEGER
119*> The leading dimension of X11. If TRANS = 'N', then LDX11 >=
120*> P; else LDX11 >= Q.
121*> \endverbatim
122*>
123*> \param[in,out] X12
124*> \verbatim
125*> X12 is REAL array, dimension (LDX12,M-Q)
126*> On entry, the top-right block of the orthogonal matrix to
127*> be reduced. On exit, the form depends on TRANS:
128*> If TRANS = 'N', then
129*> the rows of triu(X12) specify the first P reflectors for
130*> Q2;
131*> else TRANS = 'T', and
132*> the columns of tril(X12) specify the first P reflectors
133*> for Q2.
134*> \endverbatim
135*>
136*> \param[in] LDX12
137*> \verbatim
138*> LDX12 is INTEGER
139*> The leading dimension of X12. If TRANS = 'N', then LDX12 >=
140*> P; else LDX11 >= M-Q.
141*> \endverbatim
142*>
143*> \param[in,out] X21
144*> \verbatim
145*> X21 is REAL array, dimension (LDX21,Q)
146*> On entry, the bottom-left block of the orthogonal matrix to
147*> be reduced. On exit, the form depends on TRANS:
148*> If TRANS = 'N', then
149*> the columns of tril(X21) specify reflectors for P2;
150*> else TRANS = 'T', and
151*> the rows of triu(X21) specify reflectors for P2.
152*> \endverbatim
153*>
154*> \param[in] LDX21
155*> \verbatim
156*> LDX21 is INTEGER
157*> The leading dimension of X21. If TRANS = 'N', then LDX21 >=
158*> M-P; else LDX21 >= Q.
159*> \endverbatim
160*>
161*> \param[in,out] X22
162*> \verbatim
163*> X22 is REAL array, dimension (LDX22,M-Q)
164*> On entry, the bottom-right block of the orthogonal matrix to
165*> be reduced. On exit, the form depends on TRANS:
166*> If TRANS = 'N', then
167*> the rows of triu(X22(Q+1:M-P,P+1:M-Q)) specify the last
168*> M-P-Q reflectors for Q2,
169*> else TRANS = 'T', and
170*> the columns of tril(X22(P+1:M-Q,Q+1:M-P)) specify the last
171*> M-P-Q reflectors for P2.
172*> \endverbatim
173*>
174*> \param[in] LDX22
175*> \verbatim
176*> LDX22 is INTEGER
177*> The leading dimension of X22. If TRANS = 'N', then LDX22 >=
178*> M-P; else LDX22 >= M-Q.
179*> \endverbatim
180*>
181*> \param[out] THETA
182*> \verbatim
183*> THETA is REAL array, dimension (Q)
184*> The entries of the bidiagonal blocks B11, B12, B21, B22 can
185*> be computed from the angles THETA and PHI. See Further
186*> Details.
187*> \endverbatim
188*>
189*> \param[out] PHI
190*> \verbatim
191*> PHI is REAL array, dimension (Q-1)
192*> The entries of the bidiagonal blocks B11, B12, B21, B22 can
193*> be computed from the angles THETA and PHI. See Further
194*> Details.
195*> \endverbatim
196*>
197*> \param[out] TAUP1
198*> \verbatim
199*> TAUP1 is REAL array, dimension (P)
200*> The scalar factors of the elementary reflectors that define
201*> P1.
202*> \endverbatim
203*>
204*> \param[out] TAUP2
205*> \verbatim
206*> TAUP2 is REAL array, dimension (M-P)
207*> The scalar factors of the elementary reflectors that define
208*> P2.
209*> \endverbatim
210*>
211*> \param[out] TAUQ1
212*> \verbatim
213*> TAUQ1 is REAL array, dimension (Q)
214*> The scalar factors of the elementary reflectors that define
215*> Q1.
216*> \endverbatim
217*>
218*> \param[out] TAUQ2
219*> \verbatim
220*> TAUQ2 is REAL array, dimension (M-Q)
221*> The scalar factors of the elementary reflectors that define
222*> Q2.
223*> \endverbatim
224*>
225*> \param[out] WORK
226*> \verbatim
227*> WORK is REAL array, dimension (LWORK)
228*> \endverbatim
229*>
230*> \param[in] LWORK
231*> \verbatim
232*> LWORK is INTEGER
233*> The dimension of the array WORK. LWORK >= M-Q.
234*>
235*> If LWORK = -1, then a workspace query is assumed; the routine
236*> only calculates the optimal size of the WORK array, returns
237*> this value as the first entry of the WORK array, and no error
238*> message related to LWORK is issued by XERBLA.
239*> \endverbatim
240*>
241*> \param[out] INFO
242*> \verbatim
243*> INFO is INTEGER
244*> = 0: successful exit.
245*> < 0: if INFO = -i, the i-th argument had an illegal value.
246*> \endverbatim
247*
248* Authors:
249* ========
250*
251*> \author Univ. of Tennessee
252*> \author Univ. of California Berkeley
253*> \author Univ. of Colorado Denver
254*> \author NAG Ltd.
255*
256*> \ingroup unbdb
257*
258*> \par Further Details:
259* =====================
260*>
261*> \verbatim
262*>
263*> The bidiagonal blocks B11, B12, B21, and B22 are represented
264*> implicitly by angles THETA(1), ..., THETA(Q) and PHI(1), ...,
265*> PHI(Q-1). B11 and B21 are upper bidiagonal, while B21 and B22 are
266*> lower bidiagonal. Every entry in each bidiagonal band is a product
267*> of a sine or cosine of a THETA with a sine or cosine of a PHI. See
268*> [1] or SORCSD for details.
269*>
270*> P1, P2, Q1, and Q2 are represented as products of elementary
271*> reflectors. See SORCSD for details on generating P1, P2, Q1, and Q2
272*> using SORGQR and SORGLQ.
273*> \endverbatim
274*
275*> \par References:
276* ================
277*>
278*> [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
279*> Algorithms, 50(1):33-65, 2009.
280*>
281* =====================================================================
282 SUBROUTINE sorbdb( TRANS, SIGNS, M, P, Q, X11, LDX11, X12,
283 $ LDX12,
284 $ X21, LDX21, X22, LDX22, THETA, PHI, TAUP1,
285 $ TAUP2, TAUQ1, TAUQ2, WORK, LWORK, INFO )
286*
287* -- LAPACK computational routine --
288* -- LAPACK is a software package provided by Univ. of Tennessee, --
289* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
290*
291* .. Scalar Arguments ..
292 CHARACTER SIGNS, TRANS
293 INTEGER INFO, LDX11, LDX12, LDX21, LDX22, LWORK, M, P,
294 $ Q
295* ..
296* .. Array Arguments ..
297 REAL PHI( * ), THETA( * )
298 REAL TAUP1( * ), TAUP2( * ), TAUQ1( * ), TAUQ2( * ),
299 $ WORK( * ), X11( LDX11, * ), X12( LDX12, * ),
300 $ x21( ldx21, * ), x22( ldx22, * )
301* ..
302*
303* ====================================================================
304*
305* .. Parameters ..
306 REAL REALONE
307 PARAMETER ( REALONE = 1.0e0 )
308* ..
309* .. Local Scalars ..
310 LOGICAL COLMAJOR, LQUERY
311 INTEGER I, LWORKMIN, LWORKOPT
312 REAL Z1, Z2, Z3, Z4
313* ..
314* .. External Subroutines ..
315 EXTERNAL saxpy, slarf1f, slarfgp, sscal,
316 $ xerbla
317* ..
318* .. External Functions ..
319 REAL SNRM2
320 LOGICAL LSAME
321 EXTERNAL SNRM2, LSAME
322* ..
323* .. Intrinsic Functions
324 INTRINSIC atan2, cos, max, sin
325* ..
326* .. Executable Statements ..
327*
328* Test input arguments
329*
330 info = 0
331 colmajor = .NOT. lsame( trans, 'T' )
332 IF( .NOT. lsame( signs, 'O' ) ) THEN
333 z1 = realone
334 z2 = realone
335 z3 = realone
336 z4 = realone
337 ELSE
338 z1 = realone
339 z2 = -realone
340 z3 = realone
341 z4 = -realone
342 END IF
343 lquery = lwork .EQ. -1
344*
345 IF( m .LT. 0 ) THEN
346 info = -3
347 ELSE IF( p .LT. 0 .OR. p .GT. m ) THEN
348 info = -4
349 ELSE IF( q .LT. 0 .OR. q .GT. p .OR. q .GT. m-p .OR.
350 $ q .GT. m-q ) THEN
351 info = -5
352 ELSE IF( colmajor .AND. ldx11 .LT. max( 1, p ) ) THEN
353 info = -7
354 ELSE IF( .NOT.colmajor .AND. ldx11 .LT. max( 1, q ) ) THEN
355 info = -7
356 ELSE IF( colmajor .AND. ldx12 .LT. max( 1, p ) ) THEN
357 info = -9
358 ELSE IF( .NOT.colmajor .AND. ldx12 .LT. max( 1, m-q ) ) THEN
359 info = -9
360 ELSE IF( colmajor .AND. ldx21 .LT. max( 1, m-p ) ) THEN
361 info = -11
362 ELSE IF( .NOT.colmajor .AND. ldx21 .LT. max( 1, q ) ) THEN
363 info = -11
364 ELSE IF( colmajor .AND. ldx22 .LT. max( 1, m-p ) ) THEN
365 info = -13
366 ELSE IF( .NOT.colmajor .AND. ldx22 .LT. max( 1, m-q ) ) THEN
367 info = -13
368 END IF
369*
370* Compute workspace
371*
372 IF( info .EQ. 0 ) THEN
373 lworkopt = m - q
374 lworkmin = m - q
375 work(1) = real( lworkopt )
376 IF( lwork .LT. lworkmin .AND. .NOT. lquery ) THEN
377 info = -21
378 END IF
379 END IF
380 IF( info .NE. 0 ) THEN
381 CALL xerbla( 'xORBDB', -info )
382 RETURN
383 ELSE IF( lquery ) THEN
384 RETURN
385 END IF
386*
387* Handle column-major and row-major separately
388*
389 IF( colmajor ) THEN
390*
391* Reduce columns 1, ..., Q of X11, X12, X21, and X22
392*
393 DO i = 1, q
394*
395 IF( i .EQ. 1 ) THEN
396 CALL sscal( p-i+1, z1, x11(i,i), 1 )
397 ELSE
398 CALL sscal( p-i+1, z1*cos(phi(i-1)), x11(i,i), 1 )
399 CALL saxpy( p-i+1, -z1*z3*z4*sin(phi(i-1)), x12(i,
400 $ i-1),
401 $ 1, x11(i,i), 1 )
402 END IF
403 IF( i .EQ. 1 ) THEN
404 CALL sscal( m-p-i+1, z2, x21(i,i), 1 )
405 ELSE
406 CALL sscal( m-p-i+1, z2*cos(phi(i-1)), x21(i,i), 1 )
407 CALL saxpy( m-p-i+1, -z2*z3*z4*sin(phi(i-1)), x22(i,
408 $ i-1),
409 $ 1, x21(i,i), 1 )
410 END IF
411*
412 theta(i) = atan2( snrm2( m-p-i+1, x21(i,i), 1 ),
413 $ snrm2( p-i+1, x11(i,i), 1 ) )
414*
415 IF( p .GT. i ) THEN
416 CALL slarfgp( p-i+1, x11(i,i), x11(i+1,i), 1,
417 $ taup1(i) )
418 ELSE IF( p .EQ. i ) THEN
419 CALL slarfgp( p-i+1, x11(i,i), x11(i,i), 1, taup1(i) )
420 END IF
421 IF ( m-p .GT. i ) THEN
422 CALL slarfgp( m-p-i+1, x21(i,i), x21(i+1,i), 1,
423 $ taup2(i) )
424 ELSE IF ( m-p .EQ. i ) THEN
425 CALL slarfgp( m-p-i+1, x21(i,i), x21(i,i), 1,
426 $ taup2(i) )
427 END IF
428*
429 IF ( q .GT. i ) THEN
430 CALL slarf1f( 'L', p-i+1, q-i, x11(i,i), 1, taup1(i),
431 $ x11(i,i+1), ldx11, work )
432 END IF
433 IF ( m-q+1 .GT. i ) THEN
434 CALL slarf1f( 'L', p-i+1, m-q-i+1, x11(i,i), 1,
435 $ taup1(i), x12(i,i), ldx12, work )
436 END IF
437 IF ( q .GT. i ) THEN
438 CALL slarf1f( 'L', m-p-i+1, q-i, x21(i,i), 1,
439 $ taup2(i), x21(i,i+1), ldx21, work )
440 END IF
441 IF ( m-q+1 .GT. i ) THEN
442 CALL slarf1f( 'L', m-p-i+1, m-q-i+1, x21(i,i), 1,
443 $ taup2(i), x22(i,i), ldx22, work )
444 END IF
445*
446 IF( i .LT. q ) THEN
447 CALL sscal( q-i, -z1*z3*sin(theta(i)), x11(i,i+1),
448 $ ldx11 )
449 CALL saxpy( q-i, z2*z3*cos(theta(i)), x21(i,i+1),
450 $ ldx21,
451 $ x11(i,i+1), ldx11 )
452 END IF
453 CALL sscal( m-q-i+1, -z1*z4*sin(theta(i)), x12(i,i),
454 $ ldx12 )
455 CALL saxpy( m-q-i+1, z2*z4*cos(theta(i)), x22(i,i),
456 $ ldx22,
457 $ x12(i,i), ldx12 )
458*
459 IF( i .LT. q )
460 $ phi(i) = atan2( snrm2( q-i, x11(i,i+1), ldx11 ),
461 $ snrm2( m-q-i+1, x12(i,i), ldx12 ) )
462*
463 IF( i .LT. q ) THEN
464 IF ( q-i .EQ. 1 ) THEN
465 CALL slarfgp( q-i, x11(i,i+1), x11(i,i+1), ldx11,
466 $ tauq1(i) )
467 ELSE
468 CALL slarfgp( q-i, x11(i,i+1), x11(i,i+2), ldx11,
469 $ tauq1(i) )
470 END IF
471 END IF
472 IF ( q+i-1 .LT. m ) THEN
473 IF ( m-q .EQ. i ) THEN
474 CALL slarfgp( m-q-i+1, x12(i,i), x12(i,i), ldx12,
475 $ tauq2(i) )
476 ELSE
477 CALL slarfgp( m-q-i+1, x12(i,i), x12(i,i+1), ldx12,
478 $ tauq2(i) )
479 END IF
480 END IF
481*
482 IF( i .LT. q ) THEN
483 CALL slarf1f( 'R', p-i, q-i, x11(i,i+1), ldx11,
484 $ tauq1(i), x11(i+1,i+1), ldx11, work )
485 CALL slarf1f( 'R', m-p-i, q-i, x11(i,i+1), ldx11,
486 $ tauq1(i), x21(i+1,i+1), ldx21, work )
487 END IF
488 IF ( p .GT. i ) THEN
489 CALL slarf1f( 'R', p-i, m-q-i+1, x12(i,i), ldx12,
490 $ tauq2(i), x12(i+1,i), ldx12, work )
491 END IF
492 IF ( m-p .GT. i ) THEN
493 CALL slarf1f( 'R', m-p-i, m-q-i+1, x12(i,i), ldx12,
494 $ tauq2(i), x22(i+1,i), ldx22, work )
495 END IF
496*
497 END DO
498*
499* Reduce columns Q + 1, ..., P of X12, X22
500*
501 DO i = q + 1, p
502*
503 CALL sscal( m-q-i+1, -z1*z4, x12(i,i), ldx12 )
504 IF ( i .GE. m-q ) THEN
505 CALL slarfgp( m-q-i+1, x12(i,i), x12(i,i), ldx12,
506 $ tauq2(i) )
507 ELSE
508 CALL slarfgp( m-q-i+1, x12(i,i), x12(i,i+1), ldx12,
509 $ tauq2(i) )
510 END IF
511*
512 IF ( p .GT. i ) THEN
513 CALL slarf1f( 'R', p-i, m-q-i+1, x12(i,i), ldx12,
514 $ tauq2(i), x12(i+1,i), ldx12, work )
515 END IF
516 IF( m-p-q .GE. 1 )
517 $ CALL slarf1f( 'R', m-p-q, m-q-i+1, x12(i,i), ldx12,
518 $ tauq2(i), x22(q+1,i), ldx22, work )
519*
520 END DO
521*
522* Reduce columns P + 1, ..., M - Q of X12, X22
523*
524 DO i = 1, m - p - q
525*
526 CALL sscal( m-p-q-i+1, z2*z4, x22(q+i,p+i), ldx22 )
527 IF ( i .EQ. m-p-q ) THEN
528 CALL slarfgp( m-p-q-i+1, x22(q+i,p+i), x22(q+i,p+i),
529 $ ldx22, tauq2(p+i) )
530 ELSE
531 CALL slarfgp( m-p-q-i+1, x22(q+i,p+i), x22(q+i,p+i+1),
532 $ ldx22, tauq2(p+i) )
533 END IF
534 IF ( i .LT. m-p-q ) THEN
535 CALL slarf1f( 'R', m-p-q-i, m-p-q-i+1, x22(q+i,p+i),
536 $ ldx22, tauq2(p+i), x22(q+i+1,p+i),
537 $ ldx22, work )
538 END IF
539*
540 END DO
541*
542 ELSE
543*
544* Reduce columns 1, ..., Q of X11, X12, X21, X22
545*
546 DO i = 1, q
547*
548 IF( i .EQ. 1 ) THEN
549 CALL sscal( p-i+1, z1, x11(i,i), ldx11 )
550 ELSE
551 CALL sscal( p-i+1, z1*cos(phi(i-1)), x11(i,i), ldx11 )
552 CALL saxpy( p-i+1, -z1*z3*z4*sin(phi(i-1)), x12(i-1,
553 $ i),
554 $ ldx12, x11(i,i), ldx11 )
555 END IF
556 IF( i .EQ. 1 ) THEN
557 CALL sscal( m-p-i+1, z2, x21(i,i), ldx21 )
558 ELSE
559 CALL sscal( m-p-i+1, z2*cos(phi(i-1)), x21(i,i),
560 $ ldx21 )
561 CALL saxpy( m-p-i+1, -z2*z3*z4*sin(phi(i-1)), x22(i-1,
562 $ i),
563 $ ldx22, x21(i,i), ldx21 )
564 END IF
565*
566 theta(i) = atan2( snrm2( m-p-i+1, x21(i,i), ldx21 ),
567 $ snrm2( p-i+1, x11(i,i), ldx11 ) )
568*
569 CALL slarfgp( p-i+1, x11(i,i), x11(i,i+1), ldx11,
570 $ taup1(i) )
571 IF ( i .EQ. m-p ) THEN
572 CALL slarfgp( m-p-i+1, x21(i,i), x21(i,i), ldx21,
573 $ taup2(i) )
574 ELSE
575 CALL slarfgp( m-p-i+1, x21(i,i), x21(i,i+1), ldx21,
576 $ taup2(i) )
577 END IF
578*
579 IF ( q .GT. i ) THEN
580 CALL slarf1f( 'R', q-i, p-i+1, x11(i,i), ldx11,
581 $ taup1(i), x11(i+1,i), ldx11, work )
582 END IF
583 IF ( m-q+1 .GT. i ) THEN
584 CALL slarf1f( 'R', m-q-i+1, p-i+1, x11(i,i), ldx11,
585 $ taup1(i), x12(i,i), ldx12, work )
586 END IF
587 IF ( q .GT. i ) THEN
588 CALL slarf1f( 'R', q-i, m-p-i+1, x21(i,i), ldx21,
589 $ taup2(i), x21(i+1,i), ldx21, work )
590 END IF
591 IF ( m-q+1 .GT. i ) THEN
592 CALL slarf1f( 'R', m-q-i+1, m-p-i+1, x21(i,i), ldx21,
593 $ taup2(i), x22(i,i), ldx22, work )
594 END IF
595*
596 IF( i .LT. q ) THEN
597 CALL sscal( q-i, -z1*z3*sin(theta(i)), x11(i+1,i), 1 )
598 CALL saxpy( q-i, z2*z3*cos(theta(i)), x21(i+1,i), 1,
599 $ x11(i+1,i), 1 )
600 END IF
601 CALL sscal( m-q-i+1, -z1*z4*sin(theta(i)), x12(i,i), 1 )
602 CALL saxpy( m-q-i+1, z2*z4*cos(theta(i)), x22(i,i), 1,
603 $ x12(i,i), 1 )
604*
605 IF( i .LT. q )
606 $ phi(i) = atan2( snrm2( q-i, x11(i+1,i), 1 ),
607 $ snrm2( m-q-i+1, x12(i,i), 1 ) )
608*
609 IF( i .LT. q ) THEN
610 IF ( q-i .EQ. 1) THEN
611 CALL slarfgp( q-i, x11(i+1,i), x11(i+1,i), 1,
612 $ tauq1(i) )
613 ELSE
614 CALL slarfgp( q-i, x11(i+1,i), x11(i+2,i), 1,
615 $ tauq1(i) )
616 END IF
617 END IF
618 IF ( m-q .GT. i ) THEN
619 CALL slarfgp( m-q-i+1, x12(i,i), x12(i+1,i), 1,
620 $ tauq2(i) )
621 ELSE
622 CALL slarfgp( m-q-i+1, x12(i,i), x12(i,i), 1,
623 $ tauq2(i) )
624 END IF
625*
626 IF( i .LT. q ) THEN
627 CALL slarf1f( 'L', q-i, p-i, x11(i+1,i), 1, tauq1(i),
628 $ x11(i+1,i+1), ldx11, work )
629 CALL slarf1f( 'L', q-i, m-p-i, x11(i+1,i), 1,
630 $ tauq1(i), x21(i+1,i+1), ldx21, work )
631 END IF
632 CALL slarf1f( 'L', m-q-i+1, p-i, x12(i,i), 1, tauq2(i),
633 $ x12(i,i+1), ldx12, work )
634 IF ( m-p-i .GT. 0 ) THEN
635 CALL slarf1f( 'L', m-q-i+1, m-p-i, x12(i,i), 1,
636 $ tauq2(i), x22(i,i+1), ldx22, work )
637 END IF
638*
639 END DO
640*
641* Reduce columns Q + 1, ..., P of X12, X22
642*
643 DO i = q + 1, p
644*
645 CALL sscal( m-q-i+1, -z1*z4, x12(i,i), 1 )
646 CALL slarfgp( m-q-i+1, x12(i,i), x12(i+1,i), 1,
647 $ tauq2(i) )
648*
649 IF ( p .GT. i ) THEN
650 CALL slarf1f( 'L', m-q-i+1, p-i, x12(i,i), 1,
651 $ tauq2(i), x12(i,i+1), ldx12, work )
652 END IF
653 IF( m-p-q .GE. 1 )
654 $ CALL slarf1f( 'L', m-q-i+1, m-p-q, x12(i,i), 1,
655 $ tauq2(i), x22(i,q+1), ldx22, work )
656*
657 END DO
658*
659* Reduce columns P + 1, ..., M - Q of X12, X22
660*
661 DO i = 1, m - p - q
662*
663 CALL sscal( m-p-q-i+1, z2*z4, x22(p+i,q+i), 1 )
664 IF ( m-p-q .EQ. i ) THEN
665 CALL slarfgp( m-p-q-i+1, x22(p+i,q+i), x22(p+i,q+i),
666 $ 1,
667 $ tauq2(p+i) )
668 ELSE
669 CALL slarfgp( m-p-q-i+1, x22(p+i,q+i), x22(p+i+1,q+i),
670 $ 1,
671 $ tauq2(p+i) )
672 CALL slarf1f( 'L', m-p-q-i+1, m-p-q-i, x22(p+i,q+i),
673 $ 1, tauq2(p+i), x22(p+i,q+i+1), ldx22,
674 $ work )
675 END IF
676*
677*
678 END DO
679*
680 END IF
681*
682 RETURN
683*
684* End of SORBDB
685*
686 END
687
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine saxpy(n, sa, sx, incx, sy, incy)
SAXPY
Definition saxpy.f:89
subroutine slarfgp(n, alpha, x, incx, tau)
SLARFGP generates an elementary reflector (Householder matrix) with non-negative beta.
Definition slarfgp.f:102
subroutine sscal(n, sa, sx, incx)
SSCAL
Definition sscal.f:79
subroutine sorbdb(trans, signs, m, p, q, x11, ldx11, x12, ldx12, x21, ldx21, x22, ldx22, theta, phi, taup1, taup2, tauq1, tauq2, work, lwork, info)
SORBDB
Definition sorbdb.f:286
subroutine slarf1f(side, m, n, v, incv, tau, c, ldc, work)
SLARF1F applies an elementary reflector to a general rectangular
Definition slarf1f.f:123