LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
ssygvx.f
Go to the documentation of this file.
1*> \brief \b SSYGVX
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> Download SSYGVX + dependencies
9*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ssygvx.f">
10*> [TGZ]</a>
11*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ssygvx.f">
12*> [ZIP]</a>
13*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ssygvx.f">
14*> [TXT]</a>
15*
16* Definition:
17* ===========
18*
19* SUBROUTINE SSYGVX( ITYPE, JOBZ, RANGE, UPLO, N, A, LDA, B, LDB,
20* VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK,
21* LWORK, IWORK, IFAIL, INFO )
22*
23* .. Scalar Arguments ..
24* CHARACTER JOBZ, RANGE, UPLO
25* INTEGER IL, INFO, ITYPE, IU, LDA, LDB, LDZ, LWORK, M, N
26* REAL ABSTOL, VL, VU
27* ..
28* .. Array Arguments ..
29* INTEGER IFAIL( * ), IWORK( * )
30* REAL A( LDA, * ), B( LDB, * ), W( * ), WORK( * ),
31* $ Z( LDZ, * )
32* ..
33*
34*
35*> \par Purpose:
36* =============
37*>
38*> \verbatim
39*>
40*> SSYGVX computes selected eigenvalues, and optionally, eigenvectors
41*> of a real generalized symmetric-definite eigenproblem, of the form
42*> A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A
43*> and B are assumed to be symmetric and B is also positive definite.
44*> Eigenvalues and eigenvectors can be selected by specifying either a
45*> range of values or a range of indices for the desired eigenvalues.
46*> \endverbatim
47*
48* Arguments:
49* ==========
50*
51*> \param[in] ITYPE
52*> \verbatim
53*> ITYPE is INTEGER
54*> Specifies the problem type to be solved:
55*> = 1: A*x = (lambda)*B*x
56*> = 2: A*B*x = (lambda)*x
57*> = 3: B*A*x = (lambda)*x
58*> \endverbatim
59*>
60*> \param[in] JOBZ
61*> \verbatim
62*> JOBZ is CHARACTER*1
63*> = 'N': Compute eigenvalues only;
64*> = 'V': Compute eigenvalues and eigenvectors.
65*> \endverbatim
66*>
67*> \param[in] RANGE
68*> \verbatim
69*> RANGE is CHARACTER*1
70*> = 'A': all eigenvalues will be found.
71*> = 'V': all eigenvalues in the half-open interval (VL,VU]
72*> will be found.
73*> = 'I': the IL-th through IU-th eigenvalues will be found.
74*> \endverbatim
75*>
76*> \param[in] UPLO
77*> \verbatim
78*> UPLO is CHARACTER*1
79*> = 'U': Upper triangle of A and B are stored;
80*> = 'L': Lower triangle of A and B are stored.
81*> \endverbatim
82*>
83*> \param[in] N
84*> \verbatim
85*> N is INTEGER
86*> The order of the matrix pencil (A,B). N >= 0.
87*> \endverbatim
88*>
89*> \param[in,out] A
90*> \verbatim
91*> A is REAL array, dimension (LDA, N)
92*> On entry, the symmetric matrix A. If UPLO = 'U', the
93*> leading N-by-N upper triangular part of A contains the
94*> upper triangular part of the matrix A. If UPLO = 'L',
95*> the leading N-by-N lower triangular part of A contains
96*> the lower triangular part of the matrix A.
97*>
98*> On exit, the lower triangle (if UPLO='L') or the upper
99*> triangle (if UPLO='U') of A, including the diagonal, is
100*> destroyed.
101*> \endverbatim
102*>
103*> \param[in] LDA
104*> \verbatim
105*> LDA is INTEGER
106*> The leading dimension of the array A. LDA >= max(1,N).
107*> \endverbatim
108*>
109*> \param[in,out] B
110*> \verbatim
111*> B is REAL array, dimension (LDB, N)
112*> On entry, the symmetric matrix B. If UPLO = 'U', the
113*> leading N-by-N upper triangular part of B contains the
114*> upper triangular part of the matrix B. If UPLO = 'L',
115*> the leading N-by-N lower triangular part of B contains
116*> the lower triangular part of the matrix B.
117*>
118*> On exit, if INFO <= N, the part of B containing the matrix is
119*> overwritten by the triangular factor U or L from the Cholesky
120*> factorization B = U**T*U or B = L*L**T.
121*> \endverbatim
122*>
123*> \param[in] LDB
124*> \verbatim
125*> LDB is INTEGER
126*> The leading dimension of the array B. LDB >= max(1,N).
127*> \endverbatim
128*>
129*> \param[in] VL
130*> \verbatim
131*> VL is REAL
132*> If RANGE='V', the lower bound of the interval to
133*> be searched for eigenvalues. VL < VU.
134*> Not referenced if RANGE = 'A' or 'I'.
135*> \endverbatim
136*>
137*> \param[in] VU
138*> \verbatim
139*> VU is REAL
140*> If RANGE='V', the upper bound of the interval to
141*> be searched for eigenvalues. VL < VU.
142*> Not referenced if RANGE = 'A' or 'I'.
143*> \endverbatim
144*>
145*> \param[in] IL
146*> \verbatim
147*> IL is INTEGER
148*> If RANGE='I', the index of the
149*> smallest eigenvalue to be returned.
150*> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
151*> Not referenced if RANGE = 'A' or 'V'.
152*> \endverbatim
153*>
154*> \param[in] IU
155*> \verbatim
156*> IU is INTEGER
157*> If RANGE='I', the index of the
158*> largest eigenvalue to be returned.
159*> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
160*> Not referenced if RANGE = 'A' or 'V'.
161*> \endverbatim
162*>
163*> \param[in] ABSTOL
164*> \verbatim
165*> ABSTOL is REAL
166*> The absolute error tolerance for the eigenvalues.
167*> An approximate eigenvalue is accepted as converged
168*> when it is determined to lie in an interval [a,b]
169*> of width less than or equal to
170*>
171*> ABSTOL + EPS * max( |a|,|b| ) ,
172*>
173*> where EPS is the machine precision. If ABSTOL is less than
174*> or equal to zero, then EPS*|T| will be used in its place,
175*> where |T| is the 1-norm of the tridiagonal matrix obtained
176*> by reducing C to tridiagonal form, where C is the symmetric
177*> matrix of the standard symmetric problem to which the
178*> generalized problem is transformed.
179*>
180*> Eigenvalues will be computed most accurately when ABSTOL is
181*> set to twice the underflow threshold 2*DLAMCH('S'), not zero.
182*> If this routine returns with INFO>0, indicating that some
183*> eigenvectors did not converge, try setting ABSTOL to
184*> 2*SLAMCH('S').
185*> \endverbatim
186*>
187*> \param[out] M
188*> \verbatim
189*> M is INTEGER
190*> The total number of eigenvalues found. 0 <= M <= N.
191*> If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
192*> \endverbatim
193*>
194*> \param[out] W
195*> \verbatim
196*> W is REAL array, dimension (N)
197*> On normal exit, the first M elements contain the selected
198*> eigenvalues in ascending order.
199*> \endverbatim
200*>
201*> \param[out] Z
202*> \verbatim
203*> Z is REAL array, dimension (LDZ, max(1,M))
204*> If JOBZ = 'N', then Z is not referenced.
205*> If JOBZ = 'V', then if INFO = 0, the first M columns of Z
206*> contain the orthonormal eigenvectors of the matrix A
207*> corresponding to the selected eigenvalues, with the i-th
208*> column of Z holding the eigenvector associated with W(i).
209*> The eigenvectors are normalized as follows:
210*> if ITYPE = 1 or 2, Z**T*B*Z = I;
211*> if ITYPE = 3, Z**T*inv(B)*Z = I.
212*>
213*> If an eigenvector fails to converge, then that column of Z
214*> contains the latest approximation to the eigenvector, and the
215*> index of the eigenvector is returned in IFAIL.
216*> Note: the user must ensure that at least max(1,M) columns are
217*> supplied in the array Z; if RANGE = 'V', the exact value of M
218*> is not known in advance and an upper bound must be used.
219*> \endverbatim
220*>
221*> \param[in] LDZ
222*> \verbatim
223*> LDZ is INTEGER
224*> The leading dimension of the array Z. LDZ >= 1, and if
225*> JOBZ = 'V', LDZ >= max(1,N).
226*> \endverbatim
227*>
228*> \param[out] WORK
229*> \verbatim
230*> WORK is REAL array, dimension (MAX(1,LWORK))
231*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
232*> \endverbatim
233*>
234*> \param[in] LWORK
235*> \verbatim
236*> LWORK is INTEGER
237*> The length of the array WORK. LWORK >= max(1,8*N).
238*> For optimal efficiency, LWORK >= (NB+3)*N,
239*> where NB is the blocksize for SSYTRD returned by ILAENV.
240*>
241*> If LWORK = -1, then a workspace query is assumed; the routine
242*> only calculates the optimal size of the WORK array, returns
243*> this value as the first entry of the WORK array, and no error
244*> message related to LWORK is issued by XERBLA.
245*> \endverbatim
246*>
247*> \param[out] IWORK
248*> \verbatim
249*> IWORK is INTEGER array, dimension (5*N)
250*> \endverbatim
251*>
252*> \param[out] IFAIL
253*> \verbatim
254*> IFAIL is INTEGER array, dimension (N)
255*> If JOBZ = 'V', then if INFO = 0, the first M elements of
256*> IFAIL are zero. If INFO > 0, then IFAIL contains the
257*> indices of the eigenvectors that failed to converge.
258*> If JOBZ = 'N', then IFAIL is not referenced.
259*> \endverbatim
260*>
261*> \param[out] INFO
262*> \verbatim
263*> INFO is INTEGER
264*> = 0: successful exit
265*> < 0: if INFO = -i, the i-th argument had an illegal value
266*> > 0: SPOTRF or SSYEVX returned an error code:
267*> <= N: if INFO = i, SSYEVX failed to converge;
268*> i eigenvectors failed to converge. Their indices
269*> are stored in array IFAIL.
270*> > N: if INFO = N + i, for 1 <= i <= N, then the leading
271*> principal minor of order i of B is not positive.
272*> The factorization of B could not be completed and
273*> no eigenvalues or eigenvectors were computed.
274*> \endverbatim
275*
276* Authors:
277* ========
278*
279*> \author Univ. of Tennessee
280*> \author Univ. of California Berkeley
281*> \author Univ. of Colorado Denver
282*> \author NAG Ltd.
283*
284*> \ingroup hegvx
285*
286*> \par Contributors:
287* ==================
288*>
289*> Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
290*
291* =====================================================================
292 SUBROUTINE ssygvx( ITYPE, JOBZ, RANGE, UPLO, N, A, LDA, B, LDB,
293 $ VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK,
294 $ LWORK, IWORK, IFAIL, INFO )
295*
296* -- LAPACK driver routine --
297* -- LAPACK is a software package provided by Univ. of Tennessee, --
298* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
299*
300* .. Scalar Arguments ..
301 CHARACTER JOBZ, RANGE, UPLO
302 INTEGER IL, INFO, ITYPE, IU, LDA, LDB, LDZ, LWORK, M, N
303 REAL ABSTOL, VL, VU
304* ..
305* .. Array Arguments ..
306 INTEGER IFAIL( * ), IWORK( * )
307 REAL A( LDA, * ), B( LDB, * ), W( * ), WORK( * ),
308 $ z( ldz, * )
309* ..
310*
311* =====================================================================
312*
313* .. Parameters ..
314 REAL ONE
315 PARAMETER ( ONE = 1.0e+0 )
316* ..
317* .. Local Scalars ..
318 LOGICAL ALLEIG, INDEIG, LQUERY, UPPER, VALEIG, WANTZ
319 CHARACTER TRANS
320 INTEGER LWKMIN, LWKOPT, NB
321* ..
322* .. External Functions ..
323 LOGICAL LSAME
324 INTEGER ILAENV
325 REAL SROUNDUP_LWORK
326 EXTERNAL ilaenv, lsame, sroundup_lwork
327* ..
328* .. External Subroutines ..
329 EXTERNAL spotrf, ssyevx, ssygst, strmm, strsm,
330 $ xerbla
331* ..
332* .. Intrinsic Functions ..
333 INTRINSIC max, min
334* ..
335* .. Executable Statements ..
336*
337* Test the input parameters.
338*
339 upper = lsame( uplo, 'U' )
340 wantz = lsame( jobz, 'V' )
341 alleig = lsame( range, 'A' )
342 valeig = lsame( range, 'V' )
343 indeig = lsame( range, 'I' )
344 lquery = ( lwork.EQ.-1 )
345*
346 info = 0
347 IF( itype.LT.1 .OR. itype.GT.3 ) THEN
348 info = -1
349 ELSE IF( .NOT.( wantz .OR. lsame( jobz, 'N' ) ) ) THEN
350 info = -2
351 ELSE IF( .NOT.( alleig .OR. valeig .OR. indeig ) ) THEN
352 info = -3
353 ELSE IF( .NOT.( upper .OR. lsame( uplo, 'L' ) ) ) THEN
354 info = -4
355 ELSE IF( n.LT.0 ) THEN
356 info = -5
357 ELSE IF( lda.LT.max( 1, n ) ) THEN
358 info = -7
359 ELSE IF( ldb.LT.max( 1, n ) ) THEN
360 info = -9
361 ELSE
362 IF( valeig ) THEN
363 IF( n.GT.0 .AND. vu.LE.vl )
364 $ info = -11
365 ELSE IF( indeig ) THEN
366 IF( il.LT.1 .OR. il.GT.max( 1, n ) ) THEN
367 info = -12
368 ELSE IF( iu.LT.min( n, il ) .OR. iu.GT.n ) THEN
369 info = -13
370 END IF
371 END IF
372 END IF
373 IF (info.EQ.0) THEN
374 IF (ldz.LT.1 .OR. (wantz .AND. ldz.LT.n)) THEN
375 info = -18
376 END IF
377 END IF
378*
379 IF( info.EQ.0 ) THEN
380 lwkmin = max( 1, 8*n )
381 nb = ilaenv( 1, 'SSYTRD', uplo, n, -1, -1, -1 )
382 lwkopt = max( lwkmin, ( nb + 3 )*n )
383 work( 1 ) = sroundup_lwork(lwkopt)
384*
385 IF( lwork.LT.lwkmin .AND. .NOT.lquery ) THEN
386 info = -20
387 END IF
388 END IF
389*
390 IF( info.NE.0 ) THEN
391 CALL xerbla( 'SSYGVX', -info )
392 RETURN
393 ELSE IF( lquery ) THEN
394 RETURN
395 END IF
396*
397* Quick return if possible
398*
399 m = 0
400 IF( n.EQ.0 ) THEN
401 RETURN
402 END IF
403*
404* Form a Cholesky factorization of B.
405*
406 CALL spotrf( uplo, n, b, ldb, info )
407 IF( info.NE.0 ) THEN
408 info = n + info
409 RETURN
410 END IF
411*
412* Transform problem to standard eigenvalue problem and solve.
413*
414 CALL ssygst( itype, uplo, n, a, lda, b, ldb, info )
415 CALL ssyevx( jobz, range, uplo, n, a, lda, vl, vu, il, iu,
416 $ abstol,
417 $ m, w, z, ldz, work, lwork, iwork, ifail, info )
418*
419 IF( wantz ) THEN
420*
421* Backtransform eigenvectors to the original problem.
422*
423 IF( info.GT.0 )
424 $ m = info - 1
425 IF( itype.EQ.1 .OR. itype.EQ.2 ) THEN
426*
427* For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
428* backtransform eigenvectors: x = inv(L)**T*y or inv(U)*y
429*
430 IF( upper ) THEN
431 trans = 'N'
432 ELSE
433 trans = 'T'
434 END IF
435*
436 CALL strsm( 'Left', uplo, trans, 'Non-unit', n, m, one,
437 $ b,
438 $ ldb, z, ldz )
439*
440 ELSE IF( itype.EQ.3 ) THEN
441*
442* For B*A*x=(lambda)*x;
443* backtransform eigenvectors: x = L*y or U**T*y
444*
445 IF( upper ) THEN
446 trans = 'T'
447 ELSE
448 trans = 'N'
449 END IF
450*
451 CALL strmm( 'Left', uplo, trans, 'Non-unit', n, m, one,
452 $ b,
453 $ ldb, z, ldz )
454 END IF
455 END IF
456*
457* Set WORK(1) to optimal workspace size.
458*
459 work( 1 ) = sroundup_lwork(lwkopt)
460*
461 RETURN
462*
463* End of SSYGVX
464*
465 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine ssyevx(jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol, m, w, z, ldz, work, lwork, iwork, ifail, info)
SSYEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for SY matrices
Definition ssyevx.f:252
subroutine ssygst(itype, uplo, n, a, lda, b, ldb, info)
SSYGST
Definition ssygst.f:125
subroutine ssygvx(itype, jobz, range, uplo, n, a, lda, b, ldb, vl, vu, il, iu, abstol, m, w, z, ldz, work, lwork, iwork, ifail, info)
SSYGVX
Definition ssygvx.f:295
subroutine spotrf(uplo, n, a, lda, info)
SPOTRF
Definition spotrf.f:105
subroutine strmm(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)
STRMM
Definition strmm.f:177
subroutine strsm(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)
STRSM
Definition strsm.f:181