LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
|
subroutine stgsna | ( | character | job, |
character | howmny, | ||
logical, dimension( * ) | select, | ||
integer | n, | ||
real, dimension( lda, * ) | a, | ||
integer | lda, | ||
real, dimension( ldb, * ) | b, | ||
integer | ldb, | ||
real, dimension( ldvl, * ) | vl, | ||
integer | ldvl, | ||
real, dimension( ldvr, * ) | vr, | ||
integer | ldvr, | ||
real, dimension( * ) | s, | ||
real, dimension( * ) | dif, | ||
integer | mm, | ||
integer | m, | ||
real, dimension( * ) | work, | ||
integer | lwork, | ||
integer, dimension( * ) | iwork, | ||
integer | info ) |
STGSNA
Download STGSNA + dependencies [TGZ] [ZIP] [TXT]
!> !> STGSNA estimates reciprocal condition numbers for specified !> eigenvalues and/or eigenvectors of a matrix pair (A, B) in !> generalized real Schur canonical form (or of any matrix pair !> (Q*A*Z**T, Q*B*Z**T) with orthogonal matrices Q and Z, where !> Z**T denotes the transpose of Z. !> !> (A, B) must be in generalized real Schur form (as returned by SGGES), !> i.e. A is block upper triangular with 1-by-1 and 2-by-2 diagonal !> blocks. B is upper triangular. !> !>
[in] | JOB | !> JOB is CHARACTER*1 !> Specifies whether condition numbers are required for !> eigenvalues (S) or eigenvectors (DIF): !> = 'E': for eigenvalues only (S); !> = 'V': for eigenvectors only (DIF); !> = 'B': for both eigenvalues and eigenvectors (S and DIF). !> |
[in] | HOWMNY | !> HOWMNY is CHARACTER*1 !> = 'A': compute condition numbers for all eigenpairs; !> = 'S': compute condition numbers for selected eigenpairs !> specified by the array SELECT. !> |
[in] | SELECT | !> SELECT is LOGICAL array, dimension (N) !> If HOWMNY = 'S', SELECT specifies the eigenpairs for which !> condition numbers are required. To select condition numbers !> for the eigenpair corresponding to a real eigenvalue w(j), !> SELECT(j) must be set to .TRUE.. To select condition numbers !> corresponding to a complex conjugate pair of eigenvalues w(j) !> and w(j+1), either SELECT(j) or SELECT(j+1) or both, must be !> set to .TRUE.. !> If HOWMNY = 'A', SELECT is not referenced. !> |
[in] | N | !> N is INTEGER !> The order of the square matrix pair (A, B). N >= 0. !> |
[in] | A | !> A is REAL array, dimension (LDA,N) !> The upper quasi-triangular matrix A in the pair (A,B). !> |
[in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !> |
[in] | B | !> B is REAL array, dimension (LDB,N) !> The upper triangular matrix B in the pair (A,B). !> |
[in] | LDB | !> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !> |
[in] | VL | !> VL is REAL array, dimension (LDVL,M) !> If JOB = 'E' or 'B', VL must contain left eigenvectors of !> (A, B), corresponding to the eigenpairs specified by HOWMNY !> and SELECT. The eigenvectors must be stored in consecutive !> columns of VL, as returned by STGEVC. !> If JOB = 'V', VL is not referenced. !> |
[in] | LDVL | !> LDVL is INTEGER !> The leading dimension of the array VL. LDVL >= 1. !> If JOB = 'E' or 'B', LDVL >= N. !> |
[in] | VR | !> VR is REAL array, dimension (LDVR,M) !> If JOB = 'E' or 'B', VR must contain right eigenvectors of !> (A, B), corresponding to the eigenpairs specified by HOWMNY !> and SELECT. The eigenvectors must be stored in consecutive !> columns ov VR, as returned by STGEVC. !> If JOB = 'V', VR is not referenced. !> |
[in] | LDVR | !> LDVR is INTEGER !> The leading dimension of the array VR. LDVR >= 1. !> If JOB = 'E' or 'B', LDVR >= N. !> |
[out] | S | !> S is REAL array, dimension (MM) !> If JOB = 'E' or 'B', the reciprocal condition numbers of the !> selected eigenvalues, stored in consecutive elements of the !> array. For a complex conjugate pair of eigenvalues two !> consecutive elements of S are set to the same value. Thus !> S(j), DIF(j), and the j-th columns of VL and VR all !> correspond to the same eigenpair (but not in general the !> j-th eigenpair, unless all eigenpairs are selected). !> If JOB = 'V', S is not referenced. !> |
[out] | DIF | !> DIF is REAL array, dimension (MM) !> If JOB = 'V' or 'B', the estimated reciprocal condition !> numbers of the selected eigenvectors, stored in consecutive !> elements of the array. For a complex eigenvector two !> consecutive elements of DIF are set to the same value. If !> the eigenvalues cannot be reordered to compute DIF(j), DIF(j) !> is set to 0; this can only occur when the true value would be !> very small anyway. !> If JOB = 'E', DIF is not referenced. !> |
[in] | MM | !> MM is INTEGER !> The number of elements in the arrays S and DIF. MM >= M. !> |
[out] | M | !> M is INTEGER !> The number of elements of the arrays S and DIF used to store !> the specified condition numbers; for each selected real !> eigenvalue one element is used, and for each selected complex !> conjugate pair of eigenvalues, two elements are used. !> If HOWMNY = 'A', M is set to N. !> |
[out] | WORK | !> WORK is REAL array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. !> |
[in] | LWORK | !> LWORK is INTEGER !> The dimension of the array WORK. LWORK >= max(1,N). !> If JOB = 'V' or 'B' LWORK >= 2*N*(N+2)+16. !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA. !> |
[out] | IWORK | !> IWORK is INTEGER array, dimension (N + 6) !> If JOB = 'E', IWORK is not referenced. !> |
[out] | INFO | !> INFO is INTEGER !> =0: Successful exit !> <0: If INFO = -i, the i-th argument had an illegal value !> |
!> !> The reciprocal of the condition number of a generalized eigenvalue !> w = (a, b) is defined as !> !> S(w) = (|u**TAv|**2 + |u**TBv|**2)**(1/2) / (norm(u)*norm(v)) !> !> where u and v are the left and right eigenvectors of (A, B) !> corresponding to w; |z| denotes the absolute value of the complex !> number, and norm(u) denotes the 2-norm of the vector u. !> The pair (a, b) corresponds to an eigenvalue w = a/b (= u**TAv/u**TBv) !> of the matrix pair (A, B). If both a and b equal zero, then (A B) is !> singular and S(I) = -1 is returned. !> !> An approximate error bound on the chordal distance between the i-th !> computed generalized eigenvalue w and the corresponding exact !> eigenvalue lambda is !> !> chord(w, lambda) <= EPS * norm(A, B) / S(I) !> !> where EPS is the machine precision. !> !> The reciprocal of the condition number DIF(i) of right eigenvector u !> and left eigenvector v corresponding to the generalized eigenvalue w !> is defined as follows: !> !> a) If the i-th eigenvalue w = (a,b) is real !> !> Suppose U and V are orthogonal transformations such that !> !> U**T*(A, B)*V = (S, T) = ( a * ) ( b * ) 1 !> ( 0 S22 ),( 0 T22 ) n-1 !> 1 n-1 1 n-1 !> !> Then the reciprocal condition number DIF(i) is !> !> Difl((a, b), (S22, T22)) = sigma-min( Zl ), !> !> where sigma-min(Zl) denotes the smallest singular value of the !> 2(n-1)-by-2(n-1) matrix !> !> Zl = [ kron(a, In-1) -kron(1, S22) ] !> [ kron(b, In-1) -kron(1, T22) ] . !> !> Here In-1 is the identity matrix of size n-1. kron(X, Y) is the !> Kronecker product between the matrices X and Y. !> !> Note that if the default method for computing DIF(i) is wanted !> (see SLATDF), then the parameter DIFDRI (see below) should be !> changed from 3 to 4 (routine SLATDF(IJOB = 2 will be used)). !> See STGSYL for more details. !> !> b) If the i-th and (i+1)-th eigenvalues are complex conjugate pair, !> !> Suppose U and V are orthogonal transformations such that !> !> U**T*(A, B)*V = (S, T) = ( S11 * ) ( T11 * ) 2 !> ( 0 S22 ),( 0 T22) n-2 !> 2 n-2 2 n-2 !> !> and (S11, T11) corresponds to the complex conjugate eigenvalue !> pair (w, conjg(w)). There exist unitary matrices U1 and V1 such !> that !> !> U1**T*S11*V1 = ( s11 s12 ) and U1**T*T11*V1 = ( t11 t12 ) !> ( 0 s22 ) ( 0 t22 ) !> !> where the generalized eigenvalues w = s11/t11 and !> conjg(w) = s22/t22. !> !> Then the reciprocal condition number DIF(i) is bounded by !> !> min( d1, max( 1, |real(s11)/real(s22)| )*d2 ) !> !> where, d1 = Difl((s11, t11), (s22, t22)) = sigma-min(Z1), where !> Z1 is the complex 2-by-2 matrix !> !> Z1 = [ s11 -s22 ] !> [ t11 -t22 ], !> !> This is done by computing (using real arithmetic) the !> roots of the characteristical polynomial det(Z1**T * Z1 - lambda I), !> where Z1**T denotes the transpose of Z1 and det(X) denotes !> the determinant of X. !> !> and d2 is an upper bound on Difl((S11, T11), (S22, T22)), i.e. an !> upper bound on sigma-min(Z2), where Z2 is (2n-2)-by-(2n-2) !> !> Z2 = [ kron(S11**T, In-2) -kron(I2, S22) ] !> [ kron(T11**T, In-2) -kron(I2, T22) ] !> !> Note that if the default method for computing DIF is wanted (see !> SLATDF), then the parameter DIFDRI (see below) should be changed !> from 3 to 4 (routine SLATDF(IJOB = 2 will be used)). See STGSYL !> for more details. !> !> For each eigenvalue/vector specified by SELECT, DIF stores a !> Frobenius norm-based estimate of Difl. !> !> An approximate error bound for the i-th computed eigenvector VL(i) or !> VR(i) is given by !> !> EPS * norm(A, B) / DIF(i). !> !> See ref. [2-3] for more details and further references. !>
!> !> [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the !> Generalized Real Schur Form of a Regular Matrix Pair (A, B), in !> M.S. Moonen et al (eds), Linear Algebra for Large Scale and !> Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218. !> !> [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified !> Eigenvalues of a Regular Matrix Pair (A, B) and Condition !> Estimation: Theory, Algorithms and Software, !> Report UMINF - 94.04, Department of Computing Science, Umea !> University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working !> Note 87. To appear in Numerical Algorithms, 1996. !> !> [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software !> for Solving the Generalized Sylvester Equation and Estimating the !> Separation between Regular Matrix Pairs, Report UMINF - 93.23, !> Department of Computing Science, Umea University, S-901 87 Umea, !> Sweden, December 1993, Revised April 1994, Also as LAPACK Working !> Note 75. To appear in ACM Trans. on Math. Software, Vol 22, !> No 1, 1996. !>
Definition at line 376 of file stgsna.f.