LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ stgsna()

subroutine stgsna ( character job,
character howmny,
logical, dimension( * ) select,
integer n,
real, dimension( lda, * ) a,
integer lda,
real, dimension( ldb, * ) b,
integer ldb,
real, dimension( ldvl, * ) vl,
integer ldvl,
real, dimension( ldvr, * ) vr,
integer ldvr,
real, dimension( * ) s,
real, dimension( * ) dif,
integer mm,
integer m,
real, dimension( * ) work,
integer lwork,
integer, dimension( * ) iwork,
integer info )

STGSNA

Download STGSNA + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> STGSNA estimates reciprocal condition numbers for specified
!> eigenvalues and/or eigenvectors of a matrix pair (A, B) in
!> generalized real Schur canonical form (or of any matrix pair
!> (Q*A*Z**T, Q*B*Z**T) with orthogonal matrices Q and Z, where
!> Z**T denotes the transpose of Z.
!>
!> (A, B) must be in generalized real Schur form (as returned by SGGES),
!> i.e. A is block upper triangular with 1-by-1 and 2-by-2 diagonal
!> blocks. B is upper triangular.
!>
!> 
Parameters
[in]JOB
!>          JOB is CHARACTER*1
!>          Specifies whether condition numbers are required for
!>          eigenvalues (S) or eigenvectors (DIF):
!>          = 'E': for eigenvalues only (S);
!>          = 'V': for eigenvectors only (DIF);
!>          = 'B': for both eigenvalues and eigenvectors (S and DIF).
!> 
[in]HOWMNY
!>          HOWMNY is CHARACTER*1
!>          = 'A': compute condition numbers for all eigenpairs;
!>          = 'S': compute condition numbers for selected eigenpairs
!>                 specified by the array SELECT.
!> 
[in]SELECT
!>          SELECT is LOGICAL array, dimension (N)
!>          If HOWMNY = 'S', SELECT specifies the eigenpairs for which
!>          condition numbers are required. To select condition numbers
!>          for the eigenpair corresponding to a real eigenvalue w(j),
!>          SELECT(j) must be set to .TRUE.. To select condition numbers
!>          corresponding to a complex conjugate pair of eigenvalues w(j)
!>          and w(j+1), either SELECT(j) or SELECT(j+1) or both, must be
!>          set to .TRUE..
!>          If HOWMNY = 'A', SELECT is not referenced.
!> 
[in]N
!>          N is INTEGER
!>          The order of the square matrix pair (A, B). N >= 0.
!> 
[in]A
!>          A is REAL array, dimension (LDA,N)
!>          The upper quasi-triangular matrix A in the pair (A,B).
!> 
[in]LDA
!>          LDA is INTEGER
!>          The leading dimension of the array A. LDA >= max(1,N).
!> 
[in]B
!>          B is REAL array, dimension (LDB,N)
!>          The upper triangular matrix B in the pair (A,B).
!> 
[in]LDB
!>          LDB is INTEGER
!>          The leading dimension of the array B. LDB >= max(1,N).
!> 
[in]VL
!>          VL is REAL array, dimension (LDVL,M)
!>          If JOB = 'E' or 'B', VL must contain left eigenvectors of
!>          (A, B), corresponding to the eigenpairs specified by HOWMNY
!>          and SELECT. The eigenvectors must be stored in consecutive
!>          columns of VL, as returned by STGEVC.
!>          If JOB = 'V', VL is not referenced.
!> 
[in]LDVL
!>          LDVL is INTEGER
!>          The leading dimension of the array VL. LDVL >= 1.
!>          If JOB = 'E' or 'B', LDVL >= N.
!> 
[in]VR
!>          VR is REAL array, dimension (LDVR,M)
!>          If JOB = 'E' or 'B', VR must contain right eigenvectors of
!>          (A, B), corresponding to the eigenpairs specified by HOWMNY
!>          and SELECT. The eigenvectors must be stored in consecutive
!>          columns ov VR, as returned by STGEVC.
!>          If JOB = 'V', VR is not referenced.
!> 
[in]LDVR
!>          LDVR is INTEGER
!>          The leading dimension of the array VR. LDVR >= 1.
!>          If JOB = 'E' or 'B', LDVR >= N.
!> 
[out]S
!>          S is REAL array, dimension (MM)
!>          If JOB = 'E' or 'B', the reciprocal condition numbers of the
!>          selected eigenvalues, stored in consecutive elements of the
!>          array. For a complex conjugate pair of eigenvalues two
!>          consecutive elements of S are set to the same value. Thus
!>          S(j), DIF(j), and the j-th columns of VL and VR all
!>          correspond to the same eigenpair (but not in general the
!>          j-th eigenpair, unless all eigenpairs are selected).
!>          If JOB = 'V', S is not referenced.
!> 
[out]DIF
!>          DIF is REAL array, dimension (MM)
!>          If JOB = 'V' or 'B', the estimated reciprocal condition
!>          numbers of the selected eigenvectors, stored in consecutive
!>          elements of the array. For a complex eigenvector two
!>          consecutive elements of DIF are set to the same value. If
!>          the eigenvalues cannot be reordered to compute DIF(j), DIF(j)
!>          is set to 0; this can only occur when the true value would be
!>          very small anyway.
!>          If JOB = 'E', DIF is not referenced.
!> 
[in]MM
!>          MM is INTEGER
!>          The number of elements in the arrays S and DIF. MM >= M.
!> 
[out]M
!>          M is INTEGER
!>          The number of elements of the arrays S and DIF used to store
!>          the specified condition numbers; for each selected real
!>          eigenvalue one element is used, and for each selected complex
!>          conjugate pair of eigenvalues, two elements are used.
!>          If HOWMNY = 'A', M is set to N.
!> 
[out]WORK
!>          WORK is REAL array, dimension (MAX(1,LWORK))
!>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
!> 
[in]LWORK
!>          LWORK is INTEGER
!>          The dimension of the array WORK. LWORK >= max(1,N).
!>          If JOB = 'V' or 'B' LWORK >= 2*N*(N+2)+16.
!>
!>          If LWORK = -1, then a workspace query is assumed; the routine
!>          only calculates the optimal size of the WORK array, returns
!>          this value as the first entry of the WORK array, and no error
!>          message related to LWORK is issued by XERBLA.
!> 
[out]IWORK
!>          IWORK is INTEGER array, dimension (N + 6)
!>          If JOB = 'E', IWORK is not referenced.
!> 
[out]INFO
!>          INFO is INTEGER
!>          =0: Successful exit
!>          <0: If INFO = -i, the i-th argument had an illegal value
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!>
!>  The reciprocal of the condition number of a generalized eigenvalue
!>  w = (a, b) is defined as
!>
!>       S(w) = (|u**TAv|**2 + |u**TBv|**2)**(1/2) / (norm(u)*norm(v))
!>
!>  where u and v are the left and right eigenvectors of (A, B)
!>  corresponding to w; |z| denotes the absolute value of the complex
!>  number, and norm(u) denotes the 2-norm of the vector u.
!>  The pair (a, b) corresponds to an eigenvalue w = a/b (= u**TAv/u**TBv)
!>  of the matrix pair (A, B). If both a and b equal zero, then (A B) is
!>  singular and S(I) = -1 is returned.
!>
!>  An approximate error bound on the chordal distance between the i-th
!>  computed generalized eigenvalue w and the corresponding exact
!>  eigenvalue lambda is
!>
!>       chord(w, lambda) <= EPS * norm(A, B) / S(I)
!>
!>  where EPS is the machine precision.
!>
!>  The reciprocal of the condition number DIF(i) of right eigenvector u
!>  and left eigenvector v corresponding to the generalized eigenvalue w
!>  is defined as follows:
!>
!>  a) If the i-th eigenvalue w = (a,b) is real
!>
!>     Suppose U and V are orthogonal transformations such that
!>
!>              U**T*(A, B)*V  = (S, T) = ( a   *  ) ( b  *  )  1
!>                                        ( 0  S22 ),( 0 T22 )  n-1
!>                                          1  n-1     1 n-1
!>
!>     Then the reciprocal condition number DIF(i) is
!>
!>                Difl((a, b), (S22, T22)) = sigma-min( Zl ),
!>
!>     where sigma-min(Zl) denotes the smallest singular value of the
!>     2(n-1)-by-2(n-1) matrix
!>
!>         Zl = [ kron(a, In-1)  -kron(1, S22) ]
!>              [ kron(b, In-1)  -kron(1, T22) ] .
!>
!>     Here In-1 is the identity matrix of size n-1. kron(X, Y) is the
!>     Kronecker product between the matrices X and Y.
!>
!>     Note that if the default method for computing DIF(i) is wanted
!>     (see SLATDF), then the parameter DIFDRI (see below) should be
!>     changed from 3 to 4 (routine SLATDF(IJOB = 2 will be used)).
!>     See STGSYL for more details.
!>
!>  b) If the i-th and (i+1)-th eigenvalues are complex conjugate pair,
!>
!>     Suppose U and V are orthogonal transformations such that
!>
!>              U**T*(A, B)*V = (S, T) = ( S11  *   ) ( T11  *  )  2
!>                                       ( 0    S22 ),( 0    T22) n-2
!>                                         2    n-2     2    n-2
!>
!>     and (S11, T11) corresponds to the complex conjugate eigenvalue
!>     pair (w, conjg(w)). There exist unitary matrices U1 and V1 such
!>     that
!>
!>       U1**T*S11*V1 = ( s11 s12 ) and U1**T*T11*V1 = ( t11 t12 )
!>                      (  0  s22 )                    (  0  t22 )
!>
!>     where the generalized eigenvalues w = s11/t11 and
!>     conjg(w) = s22/t22.
!>
!>     Then the reciprocal condition number DIF(i) is bounded by
!>
!>         min( d1, max( 1, |real(s11)/real(s22)| )*d2 )
!>
!>     where, d1 = Difl((s11, t11), (s22, t22)) = sigma-min(Z1), where
!>     Z1 is the complex 2-by-2 matrix
!>
!>              Z1 =  [ s11  -s22 ]
!>                    [ t11  -t22 ],
!>
!>     This is done by computing (using real arithmetic) the
!>     roots of the characteristical polynomial det(Z1**T * Z1 - lambda I),
!>     where Z1**T denotes the transpose of Z1 and det(X) denotes
!>     the determinant of X.
!>
!>     and d2 is an upper bound on Difl((S11, T11), (S22, T22)), i.e. an
!>     upper bound on sigma-min(Z2), where Z2 is (2n-2)-by-(2n-2)
!>
!>              Z2 = [ kron(S11**T, In-2)  -kron(I2, S22) ]
!>                   [ kron(T11**T, In-2)  -kron(I2, T22) ]
!>
!>     Note that if the default method for computing DIF is wanted (see
!>     SLATDF), then the parameter DIFDRI (see below) should be changed
!>     from 3 to 4 (routine SLATDF(IJOB = 2 will be used)). See STGSYL
!>     for more details.
!>
!>  For each eigenvalue/vector specified by SELECT, DIF stores a
!>  Frobenius norm-based estimate of Difl.
!>
!>  An approximate error bound for the i-th computed eigenvector VL(i) or
!>  VR(i) is given by
!>
!>             EPS * norm(A, B) / DIF(i).
!>
!>  See ref. [2-3] for more details and further references.
!> 
Contributors:
Bo Kagstrom and Peter Poromaa, Department of Computing Science, Umea University, S-901 87 Umea, Sweden.
References:
!>
!>  [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
!>      Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
!>      M.S. Moonen et al (eds), Linear Algebra for Large Scale and
!>      Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
!>
!>  [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
!>      Eigenvalues of a Regular Matrix Pair (A, B) and Condition
!>      Estimation: Theory, Algorithms and Software,
!>      Report UMINF - 94.04, Department of Computing Science, Umea
!>      University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working
!>      Note 87. To appear in Numerical Algorithms, 1996.
!>
!>  [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software
!>      for Solving the Generalized Sylvester Equation and Estimating the
!>      Separation between Regular Matrix Pairs, Report UMINF - 93.23,
!>      Department of Computing Science, Umea University, S-901 87 Umea,
!>      Sweden, December 1993, Revised April 1994, Also as LAPACK Working
!>      Note 75.  To appear in ACM Trans. on Math. Software, Vol 22,
!>      No 1, 1996.
!> 

Definition at line 376 of file stgsna.f.

379*
380* -- LAPACK computational routine --
381* -- LAPACK is a software package provided by Univ. of Tennessee, --
382* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
383*
384* .. Scalar Arguments ..
385 CHARACTER HOWMNY, JOB
386 INTEGER INFO, LDA, LDB, LDVL, LDVR, LWORK, M, MM, N
387* ..
388* .. Array Arguments ..
389 LOGICAL SELECT( * )
390 INTEGER IWORK( * )
391 REAL A( LDA, * ), B( LDB, * ), DIF( * ), S( * ),
392 $ VL( LDVL, * ), VR( LDVR, * ), WORK( * )
393* ..
394*
395* =====================================================================
396*
397* .. Parameters ..
398 INTEGER DIFDRI
399 parameter( difdri = 3 )
400 REAL ZERO, ONE, TWO, FOUR
401 parameter( zero = 0.0e+0, one = 1.0e+0, two = 2.0e+0,
402 $ four = 4.0e+0 )
403* ..
404* .. Local Scalars ..
405 LOGICAL LQUERY, PAIR, SOMCON, WANTBH, WANTDF, WANTS
406 INTEGER I, IERR, IFST, ILST, IZ, K, KS, LWMIN, N1, N2
407 REAL ALPHAI, ALPHAR, ALPRQT, BETA, C1, C2, COND,
408 $ EPS, LNRM, RNRM, ROOT1, ROOT2, SCALE, SMLNUM,
409 $ TMPII, TMPIR, TMPRI, TMPRR, UHAV, UHAVI, UHBV,
410 $ UHBVI
411* ..
412* .. Local Arrays ..
413 REAL DUMMY( 1 ), DUMMY1( 1 )
414* ..
415* .. External Functions ..
416 LOGICAL LSAME
417 REAL SDOT, SLAMCH, SLAPY2,
418 $ SNRM2, SROUNDUP_LWORK
419 EXTERNAL lsame, sdot, slamch,
420 $ slapy2, snrm2,
422* ..
423* .. External Subroutines ..
424 EXTERNAL sgemv, slacpy, slag2,
426* ..
427* .. Intrinsic Functions ..
428 INTRINSIC max, min, sqrt
429* ..
430* .. Executable Statements ..
431*
432* Decode and test the input parameters
433*
434 wantbh = lsame( job, 'B' )
435 wants = lsame( job, 'E' ) .OR. wantbh
436 wantdf = lsame( job, 'V' ) .OR. wantbh
437*
438 somcon = lsame( howmny, 'S' )
439*
440 info = 0
441 lquery = ( lwork.EQ.-1 )
442*
443 IF( .NOT.wants .AND. .NOT.wantdf ) THEN
444 info = -1
445 ELSE IF( .NOT.lsame( howmny, 'A' ) .AND. .NOT.somcon ) THEN
446 info = -2
447 ELSE IF( n.LT.0 ) THEN
448 info = -4
449 ELSE IF( lda.LT.max( 1, n ) ) THEN
450 info = -6
451 ELSE IF( ldb.LT.max( 1, n ) ) THEN
452 info = -8
453 ELSE IF( wants .AND. ldvl.LT.n ) THEN
454 info = -10
455 ELSE IF( wants .AND. ldvr.LT.n ) THEN
456 info = -12
457 ELSE
458*
459* Set M to the number of eigenpairs for which condition numbers
460* are required, and test MM.
461*
462 IF( somcon ) THEN
463 m = 0
464 pair = .false.
465 DO 10 k = 1, n
466 IF( pair ) THEN
467 pair = .false.
468 ELSE
469 IF( k.LT.n ) THEN
470 IF( a( k+1, k ).EQ.zero ) THEN
471 IF( SELECT( k ) )
472 $ m = m + 1
473 ELSE
474 pair = .true.
475 IF( SELECT( k ) .OR. SELECT( k+1 ) )
476 $ m = m + 2
477 END IF
478 ELSE
479 IF( SELECT( n ) )
480 $ m = m + 1
481 END IF
482 END IF
483 10 CONTINUE
484 ELSE
485 m = n
486 END IF
487*
488 IF( n.EQ.0 ) THEN
489 lwmin = 1
490 ELSE IF( lsame( job, 'V' ) .OR. lsame( job, 'B' ) ) THEN
491 lwmin = 2*n*( n + 2 ) + 16
492 ELSE
493 lwmin = n
494 END IF
495 work( 1 ) = sroundup_lwork(lwmin)
496*
497 IF( mm.LT.m ) THEN
498 info = -15
499 ELSE IF( lwork.LT.lwmin .AND. .NOT.lquery ) THEN
500 info = -18
501 END IF
502 END IF
503*
504 IF( info.NE.0 ) THEN
505 CALL xerbla( 'STGSNA', -info )
506 RETURN
507 ELSE IF( lquery ) THEN
508 RETURN
509 END IF
510*
511* Quick return if possible
512*
513 IF( n.EQ.0 )
514 $ RETURN
515*
516* Get machine constants
517*
518 eps = slamch( 'P' )
519 smlnum = slamch( 'S' ) / eps
520 ks = 0
521 pair = .false.
522*
523 DO 20 k = 1, n
524*
525* Determine whether A(k,k) begins a 1-by-1 or 2-by-2 block.
526*
527 IF( pair ) THEN
528 pair = .false.
529 GO TO 20
530 ELSE
531 IF( k.LT.n )
532 $ pair = a( k+1, k ).NE.zero
533 END IF
534*
535* Determine whether condition numbers are required for the k-th
536* eigenpair.
537*
538 IF( somcon ) THEN
539 IF( pair ) THEN
540 IF( .NOT.SELECT( k ) .AND. .NOT.SELECT( k+1 ) )
541 $ GO TO 20
542 ELSE
543 IF( .NOT.SELECT( k ) )
544 $ GO TO 20
545 END IF
546 END IF
547*
548 ks = ks + 1
549*
550 IF( wants ) THEN
551*
552* Compute the reciprocal condition number of the k-th
553* eigenvalue.
554*
555 IF( pair ) THEN
556*
557* Complex eigenvalue pair.
558*
559 rnrm = slapy2( snrm2( n, vr( 1, ks ), 1 ),
560 $ snrm2( n, vr( 1, ks+1 ), 1 ) )
561 lnrm = slapy2( snrm2( n, vl( 1, ks ), 1 ),
562 $ snrm2( n, vl( 1, ks+1 ), 1 ) )
563 CALL sgemv( 'N', n, n, one, a, lda, vr( 1, ks ), 1,
564 $ zero,
565 $ work, 1 )
566 tmprr = sdot( n, work, 1, vl( 1, ks ), 1 )
567 tmpri = sdot( n, work, 1, vl( 1, ks+1 ), 1 )
568 CALL sgemv( 'N', n, n, one, a, lda, vr( 1, ks+1 ), 1,
569 $ zero, work, 1 )
570 tmpii = sdot( n, work, 1, vl( 1, ks+1 ), 1 )
571 tmpir = sdot( n, work, 1, vl( 1, ks ), 1 )
572 uhav = tmprr + tmpii
573 uhavi = tmpir - tmpri
574 CALL sgemv( 'N', n, n, one, b, ldb, vr( 1, ks ), 1,
575 $ zero,
576 $ work, 1 )
577 tmprr = sdot( n, work, 1, vl( 1, ks ), 1 )
578 tmpri = sdot( n, work, 1, vl( 1, ks+1 ), 1 )
579 CALL sgemv( 'N', n, n, one, b, ldb, vr( 1, ks+1 ), 1,
580 $ zero, work, 1 )
581 tmpii = sdot( n, work, 1, vl( 1, ks+1 ), 1 )
582 tmpir = sdot( n, work, 1, vl( 1, ks ), 1 )
583 uhbv = tmprr + tmpii
584 uhbvi = tmpir - tmpri
585 uhav = slapy2( uhav, uhavi )
586 uhbv = slapy2( uhbv, uhbvi )
587 cond = slapy2( uhav, uhbv )
588 s( ks ) = cond / ( rnrm*lnrm )
589 s( ks+1 ) = s( ks )
590*
591 ELSE
592*
593* Real eigenvalue.
594*
595 rnrm = snrm2( n, vr( 1, ks ), 1 )
596 lnrm = snrm2( n, vl( 1, ks ), 1 )
597 CALL sgemv( 'N', n, n, one, a, lda, vr( 1, ks ), 1,
598 $ zero,
599 $ work, 1 )
600 uhav = sdot( n, work, 1, vl( 1, ks ), 1 )
601 CALL sgemv( 'N', n, n, one, b, ldb, vr( 1, ks ), 1,
602 $ zero,
603 $ work, 1 )
604 uhbv = sdot( n, work, 1, vl( 1, ks ), 1 )
605 cond = slapy2( uhav, uhbv )
606 IF( cond.EQ.zero ) THEN
607 s( ks ) = -one
608 ELSE
609 s( ks ) = cond / ( rnrm*lnrm )
610 END IF
611 END IF
612 END IF
613*
614 IF( wantdf ) THEN
615 IF( n.EQ.1 ) THEN
616 dif( ks ) = slapy2( a( 1, 1 ), b( 1, 1 ) )
617 GO TO 20
618 END IF
619*
620* Estimate the reciprocal condition number of the k-th
621* eigenvectors.
622 IF( pair ) THEN
623*
624* Copy the 2-by 2 pencil beginning at (A(k,k), B(k, k)).
625* Compute the eigenvalue(s) at position K.
626*
627 work( 1 ) = a( k, k )
628 work( 2 ) = a( k+1, k )
629 work( 3 ) = a( k, k+1 )
630 work( 4 ) = a( k+1, k+1 )
631 work( 5 ) = b( k, k )
632 work( 6 ) = b( k+1, k )
633 work( 7 ) = b( k, k+1 )
634 work( 8 ) = b( k+1, k+1 )
635 CALL slag2( work, 2, work( 5 ), 2, smlnum*eps, beta,
636 $ dummy1( 1 ), alphar, dummy( 1 ), alphai )
637 alprqt = one
638 c1 = two*( alphar*alphar+alphai*alphai+beta*beta )
639 c2 = four*beta*beta*alphai*alphai
640 root1 = c1 + sqrt( c1*c1-4.0*c2 )
641 root1 = root1 / two
642 root2 = c2 / root1
643 cond = min( sqrt( root1 ), sqrt( root2 ) )
644 END IF
645*
646* Copy the matrix (A, B) to the array WORK and swap the
647* diagonal block beginning at A(k,k) to the (1,1) position.
648*
649 CALL slacpy( 'Full', n, n, a, lda, work, n )
650 CALL slacpy( 'Full', n, n, b, ldb, work( n*n+1 ), n )
651 ifst = k
652 ilst = 1
653*
654 CALL stgexc( .false., .false., n, work, n, work( n*n+1 ),
655 $ n,
656 $ dummy, 1, dummy1, 1, ifst, ilst,
657 $ work( n*n*2+1 ), lwork-2*n*n, ierr )
658*
659 IF( ierr.GT.0 ) THEN
660*
661* Ill-conditioned problem - swap rejected.
662*
663 dif( ks ) = zero
664 ELSE
665*
666* Reordering successful, solve generalized Sylvester
667* equation for R and L,
668* A22 * R - L * A11 = A12
669* B22 * R - L * B11 = B12,
670* and compute estimate of Difl((A11,B11), (A22, B22)).
671*
672 n1 = 1
673 IF( work( 2 ).NE.zero )
674 $ n1 = 2
675 n2 = n - n1
676 IF( n2.EQ.0 ) THEN
677 dif( ks ) = cond
678 ELSE
679 i = n*n + 1
680 iz = 2*n*n + 1
681 CALL stgsyl( 'N', difdri, n2, n1,
682 $ work( n*n1+n1+1 ),
683 $ n, work, n, work( n1+1 ), n,
684 $ work( n*n1+n1+i ), n, work( i ), n,
685 $ work( n1+i ), n, scale, dif( ks ),
686 $ work( iz+1 ), lwork-2*n*n, iwork, ierr )
687*
688 IF( pair )
689 $ dif( ks ) = min( max( one, alprqt )*dif( ks ),
690 $ cond )
691 END IF
692 END IF
693 IF( pair )
694 $ dif( ks+1 ) = dif( ks )
695 END IF
696 IF( pair )
697 $ ks = ks + 1
698*
699 20 CONTINUE
700 work( 1 ) = sroundup_lwork(lwmin)
701 RETURN
702*
703* End of STGSNA
704*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
real function sdot(n, sx, incx, sy, incy)
SDOT
Definition sdot.f:82
subroutine sgemv(trans, m, n, alpha, a, lda, x, incx, beta, y, incy)
SGEMV
Definition sgemv.f:158
subroutine slacpy(uplo, m, n, a, lda, b, ldb)
SLACPY copies all or part of one two-dimensional array to another.
Definition slacpy.f:101
subroutine slag2(a, lda, b, ldb, safmin, scale1, scale2, wr1, wr2, wi)
SLAG2 computes the eigenvalues of a 2-by-2 generalized eigenvalue problem, with scaling as necessary ...
Definition slag2.f:154
real function slamch(cmach)
SLAMCH
Definition slamch.f:68
real function slapy2(x, y)
SLAPY2 returns sqrt(x2+y2).
Definition slapy2.f:61
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
real(wp) function snrm2(n, x, incx)
SNRM2
Definition snrm2.f90:89
real function sroundup_lwork(lwork)
SROUNDUP_LWORK
subroutine stgexc(wantq, wantz, n, a, lda, b, ldb, q, ldq, z, ldz, ifst, ilst, work, lwork, info)
STGEXC
Definition stgexc.f:218
subroutine stgsyl(trans, ijob, m, n, a, lda, b, ldb, c, ldc, d, ldd, e, lde, f, ldf, scale, dif, work, lwork, iwork, info)
STGSYL
Definition stgsyl.f:298
Here is the call graph for this function:
Here is the caller graph for this function: