LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
cerrqr.f
Go to the documentation of this file.
1*> \brief \b CERRQR
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8* Definition:
9* ===========
10*
11* SUBROUTINE CERRQR( PATH, NUNIT )
12*
13* .. Scalar Arguments ..
14* CHARACTER*3 PATH
15* INTEGER NUNIT
16* ..
17*
18*
19*> \par Purpose:
20* =============
21*>
22*> \verbatim
23*>
24*> CERRQR tests the error exits for the COMPLEX routines
25*> that use the QR decomposition of a general matrix.
26*> \endverbatim
27*
28* Arguments:
29* ==========
30*
31*> \param[in] PATH
32*> \verbatim
33*> PATH is CHARACTER*3
34*> The LAPACK path name for the routines to be tested.
35*> \endverbatim
36*>
37*> \param[in] NUNIT
38*> \verbatim
39*> NUNIT is INTEGER
40*> The unit number for output.
41*> \endverbatim
42*
43* Authors:
44* ========
45*
46*> \author Univ. of Tennessee
47*> \author Univ. of California Berkeley
48*> \author Univ. of Colorado Denver
49*> \author NAG Ltd.
50*
51*> \ingroup complex_lin
52*
53* =====================================================================
54 SUBROUTINE cerrqr( PATH, NUNIT )
55*
56* -- LAPACK test routine --
57* -- LAPACK is a software package provided by Univ. of Tennessee, --
58* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
59*
60* .. Scalar Arguments ..
61 CHARACTER*3 PATH
62 INTEGER NUNIT
63* ..
64*
65* =====================================================================
66*
67* .. Parameters ..
68 INTEGER NMAX
69 parameter( nmax = 2 )
70* ..
71* .. Local Scalars ..
72 INTEGER I, INFO, J
73* ..
74* .. Local Arrays ..
75 COMPLEX A( NMAX, NMAX ), AF( NMAX, NMAX ), B( NMAX ),
76 $ W( NMAX ), X( NMAX )
77* ..
78* .. External Subroutines ..
79 EXTERNAL alaesm, cgeqr2, cgeqr2p, cgeqrf, cgeqrfp,
81 $ cunmqr
82* ..
83* .. Scalars in Common ..
84 LOGICAL LERR, OK
85 CHARACTER*32 SRNAMT
86 INTEGER INFOT, NOUT
87* ..
88* .. Common blocks ..
89 COMMON / infoc / infot, nout, ok, lerr
90 COMMON / srnamc / srnamt
91* ..
92* .. Intrinsic Functions ..
93 INTRINSIC cmplx, real
94* ..
95* .. Executable Statements ..
96*
97 nout = nunit
98 WRITE( nout, fmt = * )
99*
100* Set the variables to innocuous values.
101*
102 DO 20 j = 1, nmax
103 DO 10 i = 1, nmax
104 a( i, j ) = cmplx( 1. / real( i+j ), -1. / real( i+j ) )
105 af( i, j ) = cmplx( 1. / real( i+j ), -1. / real( i+j ) )
106 10 CONTINUE
107 b( j ) = 0.
108 w( j ) = 0.
109 x( j ) = 0.
110 20 CONTINUE
111 ok = .true.
112*
113* Error exits for QR factorization
114*
115* CGEQRF
116*
117 srnamt = 'CGEQRF'
118 infot = 1
119 CALL cgeqrf( -1, 0, a, 1, b, w, 1, info )
120 CALL chkxer( 'CGEQRF', infot, nout, lerr, ok )
121 infot = 2
122 CALL cgeqrf( 0, -1, a, 1, b, w, 1, info )
123 CALL chkxer( 'CGEQRF', infot, nout, lerr, ok )
124 infot = 4
125 CALL cgeqrf( 2, 1, a, 1, b, w, 1, info )
126 CALL chkxer( 'CGEQRF', infot, nout, lerr, ok )
127 infot = 7
128 CALL cgeqrf( 1, 2, a, 1, b, w, 1, info )
129 CALL chkxer( 'CGEQRF', infot, nout, lerr, ok )
130*
131* CGEQRFP
132*
133 srnamt = 'CGEQRFP'
134 infot = 1
135 CALL cgeqrfp( -1, 0, a, 1, b, w, 1, info )
136 CALL chkxer( 'CGEQRFP', infot, nout, lerr, ok )
137 infot = 2
138 CALL cgeqrfp( 0, -1, a, 1, b, w, 1, info )
139 CALL chkxer( 'CGEQRFP', infot, nout, lerr, ok )
140 infot = 4
141 CALL cgeqrfp( 2, 1, a, 1, b, w, 1, info )
142 CALL chkxer( 'CGEQRFP', infot, nout, lerr, ok )
143 infot = 7
144 CALL cgeqrfp( 1, 2, a, 1, b, w, 1, info )
145 CALL chkxer( 'CGEQRFP', infot, nout, lerr, ok )
146*
147* CGEQR2
148*
149 srnamt = 'CGEQR2'
150 infot = 1
151 CALL cgeqr2( -1, 0, a, 1, b, w, info )
152 CALL chkxer( 'CGEQR2', infot, nout, lerr, ok )
153 infot = 2
154 CALL cgeqr2( 0, -1, a, 1, b, w, info )
155 CALL chkxer( 'CGEQR2', infot, nout, lerr, ok )
156 infot = 4
157 CALL cgeqr2( 2, 1, a, 1, b, w, info )
158 CALL chkxer( 'CGEQR2', infot, nout, lerr, ok )
159*
160* CGEQR2P
161*
162 srnamt = 'CGEQR2P'
163 infot = 1
164 CALL cgeqr2p( -1, 0, a, 1, b, w, info )
165 CALL chkxer( 'CGEQR2P', infot, nout, lerr, ok )
166 infot = 2
167 CALL cgeqr2p( 0, -1, a, 1, b, w, info )
168 CALL chkxer( 'CGEQR2P', infot, nout, lerr, ok )
169 infot = 4
170 CALL cgeqr2p( 2, 1, a, 1, b, w, info )
171 CALL chkxer( 'CGEQR2P', infot, nout, lerr, ok )
172*
173* CUNGQR
174*
175 srnamt = 'CUNGQR'
176 infot = 1
177 CALL cungqr( -1, 0, 0, a, 1, x, w, 1, info )
178 CALL chkxer( 'CUNGQR', infot, nout, lerr, ok )
179 infot = 2
180 CALL cungqr( 0, -1, 0, a, 1, x, w, 1, info )
181 CALL chkxer( 'CUNGQR', infot, nout, lerr, ok )
182 infot = 2
183 CALL cungqr( 1, 2, 0, a, 1, x, w, 2, info )
184 CALL chkxer( 'CUNGQR', infot, nout, lerr, ok )
185 infot = 3
186 CALL cungqr( 0, 0, -1, a, 1, x, w, 1, info )
187 CALL chkxer( 'CUNGQR', infot, nout, lerr, ok )
188 infot = 3
189 CALL cungqr( 1, 1, 2, a, 1, x, w, 1, info )
190 CALL chkxer( 'CUNGQR', infot, nout, lerr, ok )
191 infot = 5
192 CALL cungqr( 2, 2, 0, a, 1, x, w, 2, info )
193 CALL chkxer( 'CUNGQR', infot, nout, lerr, ok )
194 infot = 8
195 CALL cungqr( 2, 2, 0, a, 2, x, w, 1, info )
196 CALL chkxer( 'CUNGQR', infot, nout, lerr, ok )
197*
198* CUNG2R
199*
200 srnamt = 'CUNG2R'
201 infot = 1
202 CALL cung2r( -1, 0, 0, a, 1, x, w, info )
203 CALL chkxer( 'CUNG2R', infot, nout, lerr, ok )
204 infot = 2
205 CALL cung2r( 0, -1, 0, a, 1, x, w, info )
206 CALL chkxer( 'CUNG2R', infot, nout, lerr, ok )
207 infot = 2
208 CALL cung2r( 1, 2, 0, a, 1, x, w, info )
209 CALL chkxer( 'CUNG2R', infot, nout, lerr, ok )
210 infot = 3
211 CALL cung2r( 0, 0, -1, a, 1, x, w, info )
212 CALL chkxer( 'CUNG2R', infot, nout, lerr, ok )
213 infot = 3
214 CALL cung2r( 2, 1, 2, a, 2, x, w, info )
215 CALL chkxer( 'CUNG2R', infot, nout, lerr, ok )
216 infot = 5
217 CALL cung2r( 2, 1, 0, a, 1, x, w, info )
218 CALL chkxer( 'CUNG2R', infot, nout, lerr, ok )
219*
220* CUNMQR
221*
222 srnamt = 'CUNMQR'
223 infot = 1
224 CALL cunmqr( '/', 'N', 0, 0, 0, a, 1, x, af, 1, w, 1, info )
225 CALL chkxer( 'CUNMQR', infot, nout, lerr, ok )
226 infot = 2
227 CALL cunmqr( 'L', '/', 0, 0, 0, a, 1, x, af, 1, w, 1, info )
228 CALL chkxer( 'CUNMQR', infot, nout, lerr, ok )
229 infot = 3
230 CALL cunmqr( 'L', 'N', -1, 0, 0, a, 1, x, af, 1, w, 1, info )
231 CALL chkxer( 'CUNMQR', infot, nout, lerr, ok )
232 infot = 4
233 CALL cunmqr( 'L', 'N', 0, -1, 0, a, 1, x, af, 1, w, 1, info )
234 CALL chkxer( 'CUNMQR', infot, nout, lerr, ok )
235 infot = 5
236 CALL cunmqr( 'L', 'N', 0, 0, -1, a, 1, x, af, 1, w, 1, info )
237 CALL chkxer( 'CUNMQR', infot, nout, lerr, ok )
238 infot = 5
239 CALL cunmqr( 'L', 'N', 0, 1, 1, a, 1, x, af, 1, w, 1, info )
240 CALL chkxer( 'CUNMQR', infot, nout, lerr, ok )
241 infot = 5
242 CALL cunmqr( 'R', 'N', 1, 0, 1, a, 1, x, af, 1, w, 1, info )
243 CALL chkxer( 'CUNMQR', infot, nout, lerr, ok )
244 infot = 7
245 CALL cunmqr( 'L', 'N', 2, 1, 0, a, 1, x, af, 2, w, 1, info )
246 CALL chkxer( 'CUNMQR', infot, nout, lerr, ok )
247 infot = 7
248 CALL cunmqr( 'R', 'N', 1, 2, 0, a, 1, x, af, 1, w, 1, info )
249 CALL chkxer( 'CUNMQR', infot, nout, lerr, ok )
250 infot = 10
251 CALL cunmqr( 'L', 'N', 2, 1, 0, a, 2, x, af, 1, w, 1, info )
252 CALL chkxer( 'CUNMQR', infot, nout, lerr, ok )
253 infot = 12
254 CALL cunmqr( 'L', 'N', 1, 2, 0, a, 1, x, af, 1, w, 1, info )
255 CALL chkxer( 'CUNMQR', infot, nout, lerr, ok )
256 infot = 12
257 CALL cunmqr( 'R', 'N', 2, 1, 0, a, 1, x, af, 2, w, 1, info )
258 CALL chkxer( 'CUNMQR', infot, nout, lerr, ok )
259*
260* CUNM2R
261*
262 srnamt = 'CUNM2R'
263 infot = 1
264 CALL cunm2r( '/', 'N', 0, 0, 0, a, 1, x, af, 1, w, info )
265 CALL chkxer( 'CUNM2R', infot, nout, lerr, ok )
266 infot = 2
267 CALL cunm2r( 'L', '/', 0, 0, 0, a, 1, x, af, 1, w, info )
268 CALL chkxer( 'CUNM2R', infot, nout, lerr, ok )
269 infot = 3
270 CALL cunm2r( 'L', 'N', -1, 0, 0, a, 1, x, af, 1, w, info )
271 CALL chkxer( 'CUNM2R', infot, nout, lerr, ok )
272 infot = 4
273 CALL cunm2r( 'L', 'N', 0, -1, 0, a, 1, x, af, 1, w, info )
274 CALL chkxer( 'CUNM2R', infot, nout, lerr, ok )
275 infot = 5
276 CALL cunm2r( 'L', 'N', 0, 0, -1, a, 1, x, af, 1, w, info )
277 CALL chkxer( 'CUNM2R', infot, nout, lerr, ok )
278 infot = 5
279 CALL cunm2r( 'L', 'N', 0, 1, 1, a, 1, x, af, 1, w, info )
280 CALL chkxer( 'CUNM2R', infot, nout, lerr, ok )
281 infot = 5
282 CALL cunm2r( 'R', 'N', 1, 0, 1, a, 1, x, af, 1, w, info )
283 CALL chkxer( 'CUNM2R', infot, nout, lerr, ok )
284 infot = 7
285 CALL cunm2r( 'L', 'N', 2, 1, 0, a, 1, x, af, 2, w, info )
286 CALL chkxer( 'CUNM2R', infot, nout, lerr, ok )
287 infot = 7
288 CALL cunm2r( 'R', 'N', 1, 2, 0, a, 1, x, af, 1, w, info )
289 CALL chkxer( 'CUNM2R', infot, nout, lerr, ok )
290 infot = 10
291 CALL cunm2r( 'L', 'N', 2, 1, 0, a, 2, x, af, 1, w, info )
292 CALL chkxer( 'CUNM2R', infot, nout, lerr, ok )
293*
294* Print a summary line.
295*
296 CALL alaesm( path, ok, nout )
297*
298 RETURN
299*
300* End of CERRQR
301*
302 END
subroutine alaesm(path, ok, nout)
ALAESM
Definition alaesm.f:63
subroutine chkxer(srnamt, infot, nout, lerr, ok)
Definition cblat2.f:3224
subroutine cerrqr(path, nunit)
CERRQR
Definition cerrqr.f:55
subroutine cgeqr2(m, n, a, lda, tau, work, info)
CGEQR2 computes the QR factorization of a general rectangular matrix using an unblocked algorithm.
Definition cgeqr2.f:130
subroutine cgeqr2p(m, n, a, lda, tau, work, info)
CGEQR2P computes the QR factorization of a general rectangular matrix with non-negative diagonal elem...
Definition cgeqr2p.f:134
subroutine cgeqrf(m, n, a, lda, tau, work, lwork, info)
CGEQRF
Definition cgeqrf.f:146
subroutine cgeqrfp(m, n, a, lda, tau, work, lwork, info)
CGEQRFP
Definition cgeqrfp.f:149
subroutine cung2r(m, n, k, a, lda, tau, work, info)
CUNG2R
Definition cung2r.f:114
subroutine cungqr(m, n, k, a, lda, tau, work, lwork, info)
CUNGQR
Definition cungqr.f:128
subroutine cunm2r(side, trans, m, n, k, a, lda, tau, c, ldc, work, info)
CUNM2R multiplies a general matrix by the unitary matrix from a QR factorization determined by cgeqrf...
Definition cunm2r.f:159
subroutine cunmqr(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
CUNMQR
Definition cunmqr.f:168