LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ cunmqr()

subroutine cunmqr ( character side,
character trans,
integer m,
integer n,
integer k,
complex, dimension( lda, * ) a,
integer lda,
complex, dimension( * ) tau,
complex, dimension( ldc, * ) c,
integer ldc,
complex, dimension( * ) work,
integer lwork,
integer info )

CUNMQR

Download CUNMQR + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> CUNMQR overwrites the general complex M-by-N matrix C with
!>
!>                 SIDE = 'L'     SIDE = 'R'
!> TRANS = 'N':      Q * C          C * Q
!> TRANS = 'C':      Q**H * C       C * Q**H
!>
!> where Q is a complex unitary matrix defined as the product of k
!> elementary reflectors
!>
!>       Q = H(1) H(2) . . . H(k)
!>
!> as returned by CGEQRF. Q is of order M if SIDE = 'L' and of order N
!> if SIDE = 'R'.
!> 
Parameters
[in]SIDE
!>          SIDE is CHARACTER*1
!>          = 'L': apply Q or Q**H from the Left;
!>          = 'R': apply Q or Q**H from the Right.
!> 
[in]TRANS
!>          TRANS is CHARACTER*1
!>          = 'N':  No transpose, apply Q;
!>          = 'C':  Conjugate transpose, apply Q**H.
!> 
[in]M
!>          M is INTEGER
!>          The number of rows of the matrix C. M >= 0.
!> 
[in]N
!>          N is INTEGER
!>          The number of columns of the matrix C. N >= 0.
!> 
[in]K
!>          K is INTEGER
!>          The number of elementary reflectors whose product defines
!>          the matrix Q.
!>          If SIDE = 'L', M >= K >= 0;
!>          if SIDE = 'R', N >= K >= 0.
!> 
[in]A
!>          A is COMPLEX array, dimension (LDA,K)
!>          The i-th column must contain the vector which defines the
!>          elementary reflector H(i), for i = 1,2,...,k, as returned by
!>          CGEQRF in the first k columns of its array argument A.
!> 
[in]LDA
!>          LDA is INTEGER
!>          The leading dimension of the array A.
!>          If SIDE = 'L', LDA >= max(1,M);
!>          if SIDE = 'R', LDA >= max(1,N).
!> 
[in]TAU
!>          TAU is COMPLEX array, dimension (K)
!>          TAU(i) must contain the scalar factor of the elementary
!>          reflector H(i), as returned by CGEQRF.
!> 
[in,out]C
!>          C is COMPLEX array, dimension (LDC,N)
!>          On entry, the M-by-N matrix C.
!>          On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.
!> 
[in]LDC
!>          LDC is INTEGER
!>          The leading dimension of the array C. LDC >= max(1,M).
!> 
[out]WORK
!>          WORK is COMPLEX array, dimension (MAX(1,LWORK))
!>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
!> 
[in]LWORK
!>          LWORK is INTEGER
!>          The dimension of the array WORK.
!>          If SIDE = 'L', LWORK >= max(1,N);
!>          if SIDE = 'R', LWORK >= max(1,M).
!>          For good performance, LWORK should generally be larger.
!>
!>          If LWORK = -1, then a workspace query is assumed; the routine
!>          only calculates the optimal size of the WORK array, returns
!>          this value as the first entry of the WORK array, and no error
!>          message related to LWORK is issued by XERBLA.
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 164 of file cunmqr.f.

166*
167* -- LAPACK computational routine --
168* -- LAPACK is a software package provided by Univ. of Tennessee, --
169* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
170*
171* .. Scalar Arguments ..
172 CHARACTER SIDE, TRANS
173 INTEGER INFO, K, LDA, LDC, LWORK, M, N
174* ..
175* .. Array Arguments ..
176 COMPLEX A( LDA, * ), C( LDC, * ), TAU( * ),
177 $ WORK( * )
178* ..
179*
180* =====================================================================
181*
182* .. Parameters ..
183 INTEGER NBMAX, LDT, TSIZE
184 parameter( nbmax = 64, ldt = nbmax+1,
185 $ tsize = ldt*nbmax )
186* ..
187* .. Local Scalars ..
188 LOGICAL LEFT, LQUERY, NOTRAN
189 INTEGER I, I1, I2, I3, IB, IC, IINFO, IWT, JC, LDWORK,
190 $ LWKOPT, MI, NB, NBMIN, NI, NQ, NW
191* ..
192* .. External Functions ..
193 LOGICAL LSAME
194 INTEGER ILAENV
195 REAL SROUNDUP_LWORK
196 EXTERNAL lsame, ilaenv, sroundup_lwork
197* ..
198* .. External Subroutines ..
199 EXTERNAL clarfb, clarft, cunm2r, xerbla
200* ..
201* .. Intrinsic Functions ..
202 INTRINSIC max, min
203* ..
204* .. Executable Statements ..
205*
206* Test the input arguments
207*
208 info = 0
209 left = lsame( side, 'L' )
210 notran = lsame( trans, 'N' )
211 lquery = ( lwork.EQ.-1 )
212*
213* NQ is the order of Q and NW is the minimum dimension of WORK
214*
215 IF( left ) THEN
216 nq = m
217 nw = max( 1, n )
218 ELSE
219 nq = n
220 nw = max( 1, m )
221 END IF
222 IF( .NOT.left .AND. .NOT.lsame( side, 'R' ) ) THEN
223 info = -1
224 ELSE IF( .NOT.notran .AND. .NOT.lsame( trans, 'C' ) ) THEN
225 info = -2
226 ELSE IF( m.LT.0 ) THEN
227 info = -3
228 ELSE IF( n.LT.0 ) THEN
229 info = -4
230 ELSE IF( k.LT.0 .OR. k.GT.nq ) THEN
231 info = -5
232 ELSE IF( lda.LT.max( 1, nq ) ) THEN
233 info = -7
234 ELSE IF( ldc.LT.max( 1, m ) ) THEN
235 info = -10
236 ELSE IF( lwork.LT.nw .AND. .NOT.lquery ) THEN
237 info = -12
238 END IF
239*
240 IF( info.EQ.0 ) THEN
241*
242* Compute the workspace requirements
243*
244 nb = min( nbmax, ilaenv( 1, 'CUNMQR', side // trans, m, n,
245 $ k,
246 $ -1 ) )
247 lwkopt = nw*nb + tsize
248 work( 1 ) = sroundup_lwork(lwkopt)
249 END IF
250*
251 IF( info.NE.0 ) THEN
252 CALL xerbla( 'CUNMQR', -info )
253 RETURN
254 ELSE IF( lquery ) THEN
255 RETURN
256 END IF
257*
258* Quick return if possible
259*
260 IF( m.EQ.0 .OR. n.EQ.0 .OR. k.EQ.0 ) THEN
261 work( 1 ) = 1
262 RETURN
263 END IF
264*
265 nbmin = 2
266 ldwork = nw
267 IF( nb.GT.1 .AND. nb.LT.k ) THEN
268 IF( lwork.LT.lwkopt ) THEN
269 nb = (lwork-tsize) / ldwork
270 nbmin = max( 2, ilaenv( 2, 'CUNMQR', side // trans, m, n,
271 $ k,
272 $ -1 ) )
273 END IF
274 END IF
275*
276 IF( nb.LT.nbmin .OR. nb.GE.k ) THEN
277*
278* Use unblocked code
279*
280 CALL cunm2r( side, trans, m, n, k, a, lda, tau, c, ldc,
281 $ work,
282 $ iinfo )
283 ELSE
284*
285* Use blocked code
286*
287 iwt = 1 + nw*nb
288 IF( ( left .AND. .NOT.notran ) .OR.
289 $ ( .NOT.left .AND. notran ) ) THEN
290 i1 = 1
291 i2 = k
292 i3 = nb
293 ELSE
294 i1 = ( ( k-1 ) / nb )*nb + 1
295 i2 = 1
296 i3 = -nb
297 END IF
298*
299 IF( left ) THEN
300 ni = n
301 jc = 1
302 ELSE
303 mi = m
304 ic = 1
305 END IF
306*
307 DO 10 i = i1, i2, i3
308 ib = min( nb, k-i+1 )
309*
310* Form the triangular factor of the block reflector
311* H = H(i) H(i+1) . . . H(i+ib-1)
312*
313 CALL clarft( 'Forward', 'Columnwise', nq-i+1, ib, a( i,
314 $ i ),
315 $ lda, tau( i ), work( iwt ), ldt )
316 IF( left ) THEN
317*
318* H or H**H is applied to C(i:m,1:n)
319*
320 mi = m - i + 1
321 ic = i
322 ELSE
323*
324* H or H**H is applied to C(1:m,i:n)
325*
326 ni = n - i + 1
327 jc = i
328 END IF
329*
330* Apply H or H**H
331*
332 CALL clarfb( side, trans, 'Forward', 'Columnwise', mi,
333 $ ni,
334 $ ib, a( i, i ), lda, work( iwt ), ldt,
335 $ c( ic, jc ), ldc, work, ldwork )
336 10 CONTINUE
337 END IF
338 work( 1 ) = sroundup_lwork(lwkopt)
339 RETURN
340*
341* End of CUNMQR
342*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
integer function ilaenv(ispec, name, opts, n1, n2, n3, n4)
ILAENV
Definition ilaenv.f:160
subroutine clarfb(side, trans, direct, storev, m, n, k, v, ldv, t, ldt, c, ldc, work, ldwork)
CLARFB applies a block reflector or its conjugate-transpose to a general rectangular matrix.
Definition clarfb.f:195
recursive subroutine clarft(direct, storev, n, k, v, ldv, tau, t, ldt)
CLARFT forms the triangular factor T of a block reflector H = I - vtvH
Definition clarft.f:162
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
real function sroundup_lwork(lwork)
SROUNDUP_LWORK
subroutine cunm2r(side, trans, m, n, k, a, lda, tau, c, ldc, work, info)
CUNM2R multiplies a general matrix by the unitary matrix from a QR factorization determined by cgeqrf...
Definition cunm2r.f:157
Here is the call graph for this function:
Here is the caller graph for this function: