LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ cgeqrf()

subroutine cgeqrf ( integer m,
integer n,
complex, dimension( lda, * ) a,
integer lda,
complex, dimension( * ) tau,
complex, dimension( * ) work,
integer lwork,
integer info )

CGEQRF

Download CGEQRF + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> CGEQRF computes a QR factorization of a complex M-by-N matrix A:
!>
!>    A = Q * ( R ),
!>            ( 0 )
!>
!> where:
!>
!>    Q is a M-by-M orthogonal matrix;
!>    R is an upper-triangular N-by-N matrix;
!>    0 is a (M-N)-by-N zero matrix, if M > N.
!>
!> 
Parameters
[in]M
!>          M is INTEGER
!>          The number of rows of the matrix A.  M >= 0.
!> 
[in]N
!>          N is INTEGER
!>          The number of columns of the matrix A.  N >= 0.
!> 
[in,out]A
!>          A is COMPLEX array, dimension (LDA,N)
!>          On entry, the M-by-N matrix A.
!>          On exit, the elements on and above the diagonal of the array
!>          contain the min(M,N)-by-N upper trapezoidal matrix R (R is
!>          upper triangular if m >= n); the elements below the diagonal,
!>          with the array TAU, represent the unitary matrix Q as a
!>          product of min(m,n) elementary reflectors (see Further
!>          Details).
!> 
[in]LDA
!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,M).
!> 
[out]TAU
!>          TAU is COMPLEX array, dimension (min(M,N))
!>          The scalar factors of the elementary reflectors (see Further
!>          Details).
!> 
[out]WORK
!>          WORK is COMPLEX array, dimension (MAX(1,LWORK))
!>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
!> 
[in]LWORK
!>          LWORK is INTEGER
!>          The dimension of the array WORK.
!>          LWORK >= 1, if MIN(M,N) = 0, and LWORK >= N, otherwise.
!>          For optimum performance LWORK >= N*NB, where NB is
!>          the optimal blocksize.
!>
!>          If LWORK = -1, then a workspace query is assumed; the routine
!>          only calculates the optimal size of the WORK array, returns
!>          this value as the first entry of the WORK array, and no error
!>          message related to LWORK is issued by XERBLA.
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!>
!>  The matrix Q is represented as a product of elementary reflectors
!>
!>     Q = H(1) H(2) . . . H(k), where k = min(m,n).
!>
!>  Each H(i) has the form
!>
!>     H(i) = I - tau * v * v**H
!>
!>  where tau is a complex scalar, and v is a complex vector with
!>  v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i),
!>  and tau in TAU(i).
!> 

Definition at line 143 of file cgeqrf.f.

144*
145* -- LAPACK computational routine --
146* -- LAPACK is a software package provided by Univ. of Tennessee, --
147* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
148*
149* .. Scalar Arguments ..
150 INTEGER INFO, LDA, LWORK, M, N
151* ..
152* .. Array Arguments ..
153 COMPLEX A( LDA, * ), TAU( * ), WORK( * )
154* ..
155*
156* =====================================================================
157*
158* .. Local Scalars ..
159 LOGICAL LQUERY
160 INTEGER I, IB, IINFO, IWS, K, LDWORK, LWKOPT, NB,
161 $ NBMIN, NX
162* ..
163* .. External Subroutines ..
164 EXTERNAL cgeqr2, clarfb, clarft, xerbla
165* ..
166* .. Intrinsic Functions ..
167 INTRINSIC max, min
168* ..
169* .. External Functions ..
170 INTEGER ILAENV
171 REAL SROUNDUP_LWORK
172 EXTERNAL ilaenv, sroundup_lwork
173* ..
174* .. Executable Statements ..
175*
176* Test the input arguments
177*
178 k = min( m, n )
179 info = 0
180 nb = ilaenv( 1, 'CGEQRF', ' ', m, n, -1, -1 )
181 lquery = ( lwork.EQ.-1 )
182 IF( m.LT.0 ) THEN
183 info = -1
184 ELSE IF( n.LT.0 ) THEN
185 info = -2
186 ELSE IF( lda.LT.max( 1, m ) ) THEN
187 info = -4
188 ELSE IF( .NOT.lquery ) THEN
189 IF( lwork.LE.0 .OR. ( m.GT.0 .AND. lwork.LT.max( 1, n ) ) )
190 $ info = -7
191 END IF
192 IF( info.NE.0 ) THEN
193 CALL xerbla( 'CGEQRF', -info )
194 RETURN
195 ELSE IF( lquery ) THEN
196 IF( k.EQ.0 ) THEN
197 lwkopt = 1
198 ELSE
199 lwkopt = n*nb
200 END IF
201 work( 1 ) = sroundup_lwork(lwkopt)
202 RETURN
203 END IF
204*
205* Quick return if possible
206*
207 IF( k.EQ.0 ) THEN
208 work( 1 ) = 1
209 RETURN
210 END IF
211*
212 nbmin = 2
213 nx = 0
214 iws = n
215 IF( nb.GT.1 .AND. nb.LT.k ) THEN
216*
217* Determine when to cross over from blocked to unblocked code.
218*
219 nx = max( 0, ilaenv( 3, 'CGEQRF', ' ', m, n, -1, -1 ) )
220 IF( nx.LT.k ) THEN
221*
222* Determine if workspace is large enough for blocked code.
223*
224 ldwork = n
225 iws = ldwork*nb
226 IF( lwork.LT.iws ) THEN
227*
228* Not enough workspace to use optimal NB: reduce NB and
229* determine the minimum value of NB.
230*
231 nb = lwork / ldwork
232 nbmin = max( 2, ilaenv( 2, 'CGEQRF', ' ', m, n, -1,
233 $ -1 ) )
234 END IF
235 END IF
236 END IF
237*
238 IF( nb.GE.nbmin .AND. nb.LT.k .AND. nx.LT.k ) THEN
239*
240* Use blocked code initially
241*
242 DO 10 i = 1, k - nx, nb
243 ib = min( k-i+1, nb )
244*
245* Compute the QR factorization of the current block
246* A(i:m,i:i+ib-1)
247*
248 CALL cgeqr2( m-i+1, ib, a( i, i ), lda, tau( i ), work,
249 $ iinfo )
250 IF( i+ib.LE.n ) THEN
251*
252* Form the triangular factor of the block reflector
253* H = H(i) H(i+1) . . . H(i+ib-1)
254*
255 CALL clarft( 'Forward', 'Columnwise', m-i+1, ib,
256 $ a( i, i ), lda, tau( i ), work, ldwork )
257*
258* Apply H**H to A(i:m,i+ib:n) from the left
259*
260 CALL clarfb( 'Left', 'Conjugate transpose', 'Forward',
261 $ 'Columnwise', m-i+1, n-i-ib+1, ib,
262 $ a( i, i ), lda, work, ldwork, a( i, i+ib ),
263 $ lda, work( ib+1 ), ldwork )
264 END IF
265 10 CONTINUE
266 ELSE
267 i = 1
268 END IF
269*
270* Use unblocked code to factor the last or only block.
271*
272 IF( i.LE.k )
273 $ CALL cgeqr2( m-i+1, n-i+1, a( i, i ), lda, tau( i ), work,
274 $ iinfo )
275*
276 work( 1 ) = sroundup_lwork(iws)
277 RETURN
278*
279* End of CGEQRF
280*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine cgeqr2(m, n, a, lda, tau, work, info)
CGEQR2 computes the QR factorization of a general rectangular matrix using an unblocked algorithm.
Definition cgeqr2.f:128
integer function ilaenv(ispec, name, opts, n1, n2, n3, n4)
ILAENV
Definition ilaenv.f:160
subroutine clarfb(side, trans, direct, storev, m, n, k, v, ldv, t, ldt, c, ldc, work, ldwork)
CLARFB applies a block reflector or its conjugate-transpose to a general rectangular matrix.
Definition clarfb.f:195
recursive subroutine clarft(direct, storev, n, k, v, ldv, tau, t, ldt)
CLARFT forms the triangular factor T of a block reflector H = I - vtvH
Definition clarft.f:162
real function sroundup_lwork(lwork)
SROUNDUP_LWORK
Here is the call graph for this function:
Here is the caller graph for this function: