LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ cung2r()

subroutine cung2r ( integer m,
integer n,
integer k,
complex, dimension( lda, * ) a,
integer lda,
complex, dimension( * ) tau,
complex, dimension( * ) work,
integer info )

CUNG2R

Download CUNG2R + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> CUNG2R generates an m by n complex matrix Q with orthonormal columns,
!> which is defined as the first n columns of a product of k elementary
!> reflectors of order m
!>
!>       Q  =  H(1) H(2) . . . H(k)
!>
!> as returned by CGEQRF.
!> 
Parameters
[in]M
!>          M is INTEGER
!>          The number of rows of the matrix Q. M >= 0.
!> 
[in]N
!>          N is INTEGER
!>          The number of columns of the matrix Q. M >= N >= 0.
!> 
[in]K
!>          K is INTEGER
!>          The number of elementary reflectors whose product defines the
!>          matrix Q. N >= K >= 0.
!> 
[in,out]A
!>          A is COMPLEX array, dimension (LDA,N)
!>          On entry, the i-th column must contain the vector which
!>          defines the elementary reflector H(i), for i = 1,2,...,k, as
!>          returned by CGEQRF in the first k columns of its array
!>          argument A.
!>          On exit, the m by n matrix Q.
!> 
[in]LDA
!>          LDA is INTEGER
!>          The first dimension of the array A. LDA >= max(1,M).
!> 
[in]TAU
!>          TAU is COMPLEX array, dimension (K)
!>          TAU(i) must contain the scalar factor of the elementary
!>          reflector H(i), as returned by CGEQRF.
!> 
[out]WORK
!>          WORK is COMPLEX array, dimension (N)
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0: successful exit
!>          < 0: if INFO = -i, the i-th argument has an illegal value
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 111 of file cung2r.f.

112*
113* -- LAPACK computational routine --
114* -- LAPACK is a software package provided by Univ. of Tennessee, --
115* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
116*
117* .. Scalar Arguments ..
118 INTEGER INFO, K, LDA, M, N
119* ..
120* .. Array Arguments ..
121 COMPLEX A( LDA, * ), TAU( * ), WORK( * )
122* ..
123*
124* =====================================================================
125*
126* .. Parameters ..
127 COMPLEX ONE, ZERO
128 parameter( one = ( 1.0e+0, 0.0e+0 ),
129 $ zero = ( 0.0e+0, 0.0e+0 ) )
130* ..
131* .. Local Scalars ..
132 INTEGER I, J, L
133* ..
134* .. External Subroutines ..
135 EXTERNAL clarf1f, cscal, xerbla
136* ..
137* .. Intrinsic Functions ..
138 INTRINSIC max
139* ..
140* .. Executable Statements ..
141*
142* Test the input arguments
143*
144 info = 0
145 IF( m.LT.0 ) THEN
146 info = -1
147 ELSE IF( n.LT.0 .OR. n.GT.m ) THEN
148 info = -2
149 ELSE IF( k.LT.0 .OR. k.GT.n ) THEN
150 info = -3
151 ELSE IF( lda.LT.max( 1, m ) ) THEN
152 info = -5
153 END IF
154 IF( info.NE.0 ) THEN
155 CALL xerbla( 'CUNG2R', -info )
156 RETURN
157 END IF
158*
159* Quick return if possible
160*
161 IF( n.LE.0 )
162 $ RETURN
163*
164* Initialise columns k+1:n to columns of the unit matrix
165*
166 DO 20 j = k + 1, n
167 DO 10 l = 1, m
168 a( l, j ) = zero
169 10 CONTINUE
170 a( j, j ) = one
171 20 CONTINUE
172*
173 DO 40 i = k, 1, -1
174*
175* Apply H(i) to A(i:m,i:n) from the left
176*
177 IF( i.LT.n ) THEN
178 CALL clarf1f( 'Left', m-i+1, n-i, a( i, i ), 1, tau( i ),
179 $ a( i, i+1 ), lda, work )
180 END IF
181 IF( i.LT.m )
182 $ CALL cscal( m-i, -tau( i ), a( i+1, i ), 1 )
183 a( i, i ) = one - tau( i )
184*
185* Set A(1:i-1,i) to zero
186*
187 DO 30 l = 1, i - 1
188 a( l, i ) = zero
189 30 CONTINUE
190 40 CONTINUE
191 RETURN
192*
193* End of CUNG2R
194*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine clarf1f(side, m, n, v, incv, tau, c, ldc, work)
CLARF1F applies an elementary reflector to a general rectangular
Definition clarf1f.f:126
subroutine cscal(n, ca, cx, incx)
CSCAL
Definition cscal.f:78
Here is the call graph for this function:
Here is the caller graph for this function: