LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ cung2r()

subroutine cung2r ( integer  m,
integer  n,
integer  k,
complex, dimension( lda, * )  a,
integer  lda,
complex, dimension( * )  tau,
complex, dimension( * )  work,
integer  info 
)

CUNG2R

Download CUNG2R + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 CUNG2R generates an m by n complex matrix Q with orthonormal columns,
 which is defined as the first n columns of a product of k elementary
 reflectors of order m

       Q  =  H(1) H(2) . . . H(k)

 as returned by CGEQRF.
Parameters
[in]M
          M is INTEGER
          The number of rows of the matrix Q. M >= 0.
[in]N
          N is INTEGER
          The number of columns of the matrix Q. M >= N >= 0.
[in]K
          K is INTEGER
          The number of elementary reflectors whose product defines the
          matrix Q. N >= K >= 0.
[in,out]A
          A is COMPLEX array, dimension (LDA,N)
          On entry, the i-th column must contain the vector which
          defines the elementary reflector H(i), for i = 1,2,...,k, as
          returned by CGEQRF in the first k columns of its array
          argument A.
          On exit, the m by n matrix Q.
[in]LDA
          LDA is INTEGER
          The first dimension of the array A. LDA >= max(1,M).
[in]TAU
          TAU is COMPLEX array, dimension (K)
          TAU(i) must contain the scalar factor of the elementary
          reflector H(i), as returned by CGEQRF.
[out]WORK
          WORK is COMPLEX array, dimension (N)
[out]INFO
          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -i, the i-th argument has an illegal value
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 113 of file cung2r.f.

114*
115* -- LAPACK computational routine --
116* -- LAPACK is a software package provided by Univ. of Tennessee, --
117* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
118*
119* .. Scalar Arguments ..
120 INTEGER INFO, K, LDA, M, N
121* ..
122* .. Array Arguments ..
123 COMPLEX A( LDA, * ), TAU( * ), WORK( * )
124* ..
125*
126* =====================================================================
127*
128* .. Parameters ..
129 COMPLEX ONE, ZERO
130 parameter( one = ( 1.0e+0, 0.0e+0 ),
131 $ zero = ( 0.0e+0, 0.0e+0 ) )
132* ..
133* .. Local Scalars ..
134 INTEGER I, J, L
135* ..
136* .. External Subroutines ..
137 EXTERNAL clarf, cscal, xerbla
138* ..
139* .. Intrinsic Functions ..
140 INTRINSIC max
141* ..
142* .. Executable Statements ..
143*
144* Test the input arguments
145*
146 info = 0
147 IF( m.LT.0 ) THEN
148 info = -1
149 ELSE IF( n.LT.0 .OR. n.GT.m ) THEN
150 info = -2
151 ELSE IF( k.LT.0 .OR. k.GT.n ) THEN
152 info = -3
153 ELSE IF( lda.LT.max( 1, m ) ) THEN
154 info = -5
155 END IF
156 IF( info.NE.0 ) THEN
157 CALL xerbla( 'CUNG2R', -info )
158 RETURN
159 END IF
160*
161* Quick return if possible
162*
163 IF( n.LE.0 )
164 $ RETURN
165*
166* Initialise columns k+1:n to columns of the unit matrix
167*
168 DO 20 j = k + 1, n
169 DO 10 l = 1, m
170 a( l, j ) = zero
171 10 CONTINUE
172 a( j, j ) = one
173 20 CONTINUE
174*
175 DO 40 i = k, 1, -1
176*
177* Apply H(i) to A(i:m,i:n) from the left
178*
179 IF( i.LT.n ) THEN
180 a( i, i ) = one
181 CALL clarf( 'Left', m-i+1, n-i, a( i, i ), 1, tau( i ),
182 $ a( i, i+1 ), lda, work )
183 END IF
184 IF( i.LT.m )
185 $ CALL cscal( m-i, -tau( i ), a( i+1, i ), 1 )
186 a( i, i ) = one - tau( i )
187*
188* Set A(1:i-1,i) to zero
189*
190 DO 30 l = 1, i - 1
191 a( l, i ) = zero
192 30 CONTINUE
193 40 CONTINUE
194 RETURN
195*
196* End of CUNG2R
197*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine clarf(side, m, n, v, incv, tau, c, ldc, work)
CLARF applies an elementary reflector to a general rectangular matrix.
Definition clarf.f:128
subroutine cscal(n, ca, cx, incx)
CSCAL
Definition cscal.f:78
Here is the call graph for this function:
Here is the caller graph for this function: