LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ dlaqp2rk()

subroutine dlaqp2rk ( integer m,
integer n,
integer nrhs,
integer ioffset,
integer kmax,
double precision abstol,
double precision reltol,
integer kp1,
double precision maxc2nrm,
double precision, dimension( lda, * ) a,
integer lda,
integer k,
double precision maxc2nrmk,
double precision relmaxc2nrmk,
integer, dimension( * ) jpiv,
double precision, dimension( * ) tau,
double precision, dimension( * ) vn1,
double precision, dimension( * ) vn2,
double precision, dimension( * ) work,
integer info )

DLAQP2RK computes truncated QR factorization with column pivoting of a real matrix block using Level 2 BLAS and overwrites a real m-by-nrhs matrix B with Q**T * B.

Download DLAQP2RK + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> DLAQP2RK computes a truncated (rank K) or full rank Householder QR
!> factorization with column pivoting of a real matrix
!> block A(IOFFSET+1:M,1:N) as
!>
!>   A * P(K) = Q(K) * R(K).
!>
!> The routine uses Level 2 BLAS. The block A(1:IOFFSET,1:N)
!> is accordingly pivoted, but not factorized.
!>
!> The routine also overwrites the right-hand-sides matrix block B
!> stored in A(IOFFSET+1:M,N+1:N+NRHS) with Q(K)**T * B.
!> 
Parameters
[in]M
!>          M is INTEGER
!>          The number of rows of the matrix A. M >= 0.
!> 
[in]N
!>          N is INTEGER
!>          The number of columns of the matrix A. N >= 0.
!> 
[in]NRHS
!>          NRHS is INTEGER
!>          The number of right hand sides, i.e., the number of
!>          columns of the matrix B. NRHS >= 0.
!> 
[in]IOFFSET
!>          IOFFSET is INTEGER
!>          The number of rows of the matrix A that must be pivoted
!>          but not factorized. IOFFSET >= 0.
!>
!>          IOFFSET also represents the number of columns of the whole
!>          original matrix A_orig that have been factorized
!>          in the previous steps.
!> 
[in]KMAX
!>          KMAX is INTEGER
!>
!>          The first factorization stopping criterion. KMAX >= 0.
!>
!>          The maximum number of columns of the matrix A to factorize,
!>          i.e. the maximum factorization rank.
!>
!>          a) If KMAX >= min(M-IOFFSET,N), then this stopping
!>                criterion is not used, factorize columns
!>                depending on ABSTOL and RELTOL.
!>
!>          b) If KMAX = 0, then this stopping criterion is
!>             satisfied on input and the routine exits immediately.
!>             This means that the factorization is not performed,
!>             the matrices A and B and the arrays TAU, IPIV
!>             are not modified.
!> 
[in]ABSTOL
!>          ABSTOL is DOUBLE PRECISION, cannot be NaN.
!>
!>          The second factorization stopping criterion.
!>
!>          The absolute tolerance (stopping threshold) for
!>          maximum column 2-norm of the residual matrix.
!>          The algorithm converges (stops the factorization) when
!>          the maximum column 2-norm of the residual matrix
!>          is less than or equal to ABSTOL.
!>
!>          a) If ABSTOL < 0.0, then this stopping criterion is not
!>                used, the routine factorizes columns depending
!>                on KMAX and RELTOL.
!>                This includes the case ABSTOL = -Inf.
!>
!>          b) If 0.0 <= ABSTOL then the input value
!>                of ABSTOL is used.
!> 
[in]RELTOL
!>          RELTOL is DOUBLE PRECISION, cannot be NaN.
!>
!>          The third factorization stopping criterion.
!>
!>          The tolerance (stopping threshold) for the ratio of the
!>          maximum column 2-norm of the residual matrix to the maximum
!>          column 2-norm of the original matrix A_orig. The algorithm
!>          converges (stops the factorization), when this ratio is
!>          less than or equal to RELTOL.
!>
!>          a) If RELTOL < 0.0, then this stopping criterion is not
!>                used, the routine factorizes columns depending
!>                on KMAX and ABSTOL.
!>                This includes the case RELTOL = -Inf.
!>
!>          d) If 0.0 <= RELTOL then the input value of RELTOL
!>                is used.
!> 
[in]KP1
!>          KP1 is INTEGER
!>          The index of the column with the maximum 2-norm in
!>          the whole original matrix A_orig determined in the
!>          main routine DGEQP3RK. 1 <= KP1 <= N_orig_mat.
!> 
[in]MAXC2NRM
!>          MAXC2NRM is DOUBLE PRECISION
!>          The maximum column 2-norm of the whole original
!>          matrix A_orig computed in the main routine DGEQP3RK.
!>          MAXC2NRM >= 0.
!> 
[in,out]A
!>          A is DOUBLE PRECISION array, dimension (LDA,N+NRHS)
!>          On entry:
!>              the M-by-N matrix A and M-by-NRHS matrix B, as in
!>
!>                                  N     NRHS
!>              array_A   =   M  [ mat_A, mat_B ]
!>
!>          On exit:
!>          1. The elements in block A(IOFFSET+1:M,1:K) below
!>             the diagonal together with the array TAU represent
!>             the orthogonal matrix Q(K) as a product of elementary
!>             reflectors.
!>          2. The upper triangular block of the matrix A stored
!>             in A(IOFFSET+1:M,1:K) is the triangular factor obtained.
!>          3. The block of the matrix A stored in A(1:IOFFSET,1:N)
!>             has been accordingly pivoted, but not factorized.
!>          4. The rest of the array A, block A(IOFFSET+1:M,K+1:N+NRHS).
!>             The left part A(IOFFSET+1:M,K+1:N) of this block
!>             contains the residual of the matrix A, and,
!>             if NRHS > 0, the right part of the block
!>             A(IOFFSET+1:M,N+1:N+NRHS) contains the block of
!>             the right-hand-side matrix B. Both these blocks have been
!>             updated by multiplication from the left by Q(K)**T.
!> 
[in]LDA
!>          LDA is INTEGER
!>          The leading dimension of the array A. LDA >= max(1,M).
!> 
[out]K
!>          K is INTEGER
!>          Factorization rank of the matrix A, i.e. the rank of
!>          the factor R, which is the same as the number of non-zero
!>          rows of the factor R. 0 <= K <= min(M-IOFFSET,KMAX,N).
!>
!>          K also represents the number of non-zero Householder
!>          vectors.
!> 
[out]MAXC2NRMK
!>          MAXC2NRMK is DOUBLE PRECISION
!>          The maximum column 2-norm of the residual matrix,
!>          when the factorization stopped at rank K. MAXC2NRMK >= 0.
!> 
[out]RELMAXC2NRMK
!>          RELMAXC2NRMK is DOUBLE PRECISION
!>          The ratio MAXC2NRMK / MAXC2NRM of the maximum column
!>          2-norm of the residual matrix (when the factorization
!>          stopped at rank K) to the maximum column 2-norm of the
!>          whole original matrix A. RELMAXC2NRMK >= 0.
!> 
[out]JPIV
!>          JPIV is INTEGER array, dimension (N)
!>          Column pivot indices, for 1 <= j <= N, column j
!>          of the matrix A was interchanged with column JPIV(j).
!> 
[out]TAU
!>          TAU is DOUBLE PRECISION array, dimension (min(M-IOFFSET,N))
!>          The scalar factors of the elementary reflectors.
!> 
[in,out]VN1
!>          VN1 is DOUBLE PRECISION array, dimension (N)
!>          The vector with the partial column norms.
!> 
[in,out]VN2
!>          VN2 is DOUBLE PRECISION array, dimension (N)
!>          The vector with the exact column norms.
!> 
[out]WORK
!>          WORK is DOUBLE PRECISION array, dimension (N-1)
!>          Used in DLARF1F subroutine to apply an elementary
!>          reflector from the left.
!> 
[out]INFO
!>          INFO is INTEGER
!>          1) INFO = 0: successful exit.
!>          2) If INFO = j_1, where 1 <= j_1 <= N, then NaN was
!>             detected and the routine stops the computation.
!>             The j_1-th column of the matrix A or the j_1-th
!>             element of array TAU contains the first occurrence
!>             of NaN in the factorization step K+1 ( when K columns
!>             have been factorized ).
!>
!>             On exit:
!>             K                  is set to the number of
!>                                   factorized columns without
!>                                   exception.
!>             MAXC2NRMK          is set to NaN.
!>             RELMAXC2NRMK       is set to NaN.
!>             TAU(K+1:min(M,N))  is not set and contains undefined
!>                                   elements. If j_1=K+1, TAU(K+1)
!>                                   may contain NaN.
!>          3) If INFO = j_2, where N+1 <= j_2 <= 2*N, then no NaN
!>             was detected, but +Inf (or -Inf) was detected and
!>             the routine continues the computation until completion.
!>             The (j_2-N)-th column of the matrix A contains the first
!>             occurrence of +Inf (or -Inf) in the factorization
!>             step K+1 ( when K columns have been factorized ).
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
References:
[1] A Level 3 BLAS QR factorization algorithm with column pivoting developed in 1996. G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain. X. Sun, Computer Science Dept., Duke University, USA. C. H. Bischof, Math. and Comp. Sci. Div., Argonne National Lab, USA. A BLAS-3 version of the QR factorization with column pivoting. LAPACK Working Note 114 https://www.netlib.org/lapack/lawnspdf/lawn114.pdf and in SIAM J. Sci. Comput., 19(5):1486-1494, Sept. 1998. https://doi.org/10.1137/S1064827595296732

[2] A partial column norm updating strategy developed in 2006. Z. Drmac and Z. Bujanovic, Dept. of Math., University of Zagreb, Croatia. On the failure of rank revealing QR factorization software – a case study. LAPACK Working Note 176. http://www.netlib.org/lapack/lawnspdf/lawn176.pdf and in ACM Trans. Math. Softw. 35, 2, Article 12 (July 2008), 28 pages. https://doi.org/10.1145/1377612.1377616

Contributors:
!>
!>  November  2023, Igor Kozachenko, James Demmel,
!>                  EECS Department,
!>                  University of California, Berkeley, USA.
!>
!> 

Definition at line 330 of file dlaqp2rk.f.

334 IMPLICIT NONE
335*
336* -- LAPACK auxiliary routine --
337* -- LAPACK is a software package provided by Univ. of Tennessee, --
338* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
339*
340* .. Scalar Arguments ..
341 INTEGER INFO, IOFFSET, KP1, K, KMAX, LDA, M, N, NRHS
342 DOUBLE PRECISION ABSTOL, MAXC2NRM, MAXC2NRMK, RELMAXC2NRMK,
343 $ RELTOL
344* ..
345* .. Array Arguments ..
346 INTEGER JPIV( * )
347 DOUBLE PRECISION A( LDA, * ), TAU( * ), VN1( * ), VN2( * ),
348 $ WORK( * )
349* ..
350*
351* =====================================================================
352*
353* .. Parameters ..
354 DOUBLE PRECISION ZERO, ONE
355 parameter( zero = 0.0d+0, one = 1.0d+0 )
356* ..
357* .. Local Scalars ..
358 INTEGER I, ITEMP, J, JMAXC2NRM, KK, KP, MINMNFACT,
359 $ MINMNUPDT
360 DOUBLE PRECISION HUGEVAL, TEMP, TEMP2, TOL3Z
361* ..
362* .. External Subroutines ..
363 EXTERNAL dlarf1f, dlarfg, dswap
364* ..
365* .. Intrinsic Functions ..
366 INTRINSIC abs, max, min, sqrt
367* ..
368* .. External Functions ..
369 LOGICAL DISNAN
370 INTEGER IDAMAX
371 DOUBLE PRECISION DLAMCH, DNRM2
372 EXTERNAL disnan, dlamch, idamax, dnrm2
373* ..
374* .. Executable Statements ..
375*
376* Initialize INFO
377*
378 info = 0
379*
380* MINMNFACT in the smallest dimension of the submatrix
381* A(IOFFSET+1:M,1:N) to be factorized.
382*
383* MINMNUPDT is the smallest dimension
384* of the subarray A(IOFFSET+1:M,1:N+NRHS) to be udated, which
385* contains the submatrices A(IOFFSET+1:M,1:N) and
386* B(IOFFSET+1:M,1:NRHS) as column blocks.
387*
388 minmnfact = min( m-ioffset, n )
389 minmnupdt = min( m-ioffset, n+nrhs )
390 kmax = min( kmax, minmnfact )
391 tol3z = sqrt( dlamch( 'Epsilon' ) )
392 hugeval = dlamch( 'Overflow' )
393*
394* Compute the factorization, KK is the lomn loop index.
395*
396 DO kk = 1, kmax
397*
398 i = ioffset + kk
399*
400 IF( i.EQ.1 ) THEN
401*
402* ============================================================
403*
404* We are at the first column of the original whole matrix A,
405* therefore we use the computed KP1 and MAXC2NRM from the
406* main routine.
407*
408
409 kp = kp1
410*
411* ============================================================
412*
413 ELSE
414*
415* ============================================================
416*
417* Determine the pivot column in KK-th step, i.e. the index
418* of the column with the maximum 2-norm in the
419* submatrix A(I:M,K:N).
420*
421 kp = ( kk-1 ) + idamax( n-kk+1, vn1( kk ), 1 )
422*
423* Determine the maximum column 2-norm and the relative maximum
424* column 2-norm of the submatrix A(I:M,KK:N) in step KK.
425* RELMAXC2NRMK will be computed later, after somecondition
426* checks on MAXC2NRMK.
427*
428 maxc2nrmk = vn1( kp )
429*
430* ============================================================
431*
432* Check if the submatrix A(I:M,KK:N) contains NaN, and set
433* INFO parameter to the column number, where the first NaN
434* is found and return from the routine.
435* We need to check the condition only if the
436* column index (same as row index) of the original whole
437* matrix is larger than 1, since the condition for whole
438* original matrix is checked in the main routine.
439*
440 IF( disnan( maxc2nrmk ) ) THEN
441*
442* Set K, the number of factorized columns.
443* that are not zero.
444*
445 k = kk - 1
446 info = k + kp
447*
448* Set RELMAXC2NRMK to NaN.
449*
450 relmaxc2nrmk = maxc2nrmk
451*
452* Array TAU(K+1:MINMNFACT) is not set and contains
453* undefined elements.
454*
455 RETURN
456 END IF
457*
458* ============================================================
459*
460* Quick return, if the submatrix A(I:M,KK:N) is
461* a zero matrix.
462* We need to check the condition only if the
463* column index (same as row index) of the original whole
464* matrix is larger than 1, since the condition for whole
465* original matrix is checked in the main routine.
466*
467 IF( maxc2nrmk.EQ.zero ) THEN
468*
469* Set K, the number of factorized columns.
470* that are not zero.
471*
472 k = kk - 1
473 relmaxc2nrmk = zero
474*
475* Set TAUs corresponding to the columns that were not
476* factorized to ZERO, i.e. set TAU(KK:MINMNFACT) to ZERO.
477*
478 DO j = kk, minmnfact
479 tau( j ) = zero
480 END DO
481*
482* Return from the routine.
483*
484 RETURN
485*
486 END IF
487*
488* ============================================================
489*
490* Check if the submatrix A(I:M,KK:N) contains Inf,
491* set INFO parameter to the column number, where
492* the first Inf is found plus N, and continue
493* the computation.
494* We need to check the condition only if the
495* column index (same as row index) of the original whole
496* matrix is larger than 1, since the condition for whole
497* original matrix is checked in the main routine.
498*
499 IF( info.EQ.0 .AND. maxc2nrmk.GT.hugeval ) THEN
500 info = n + kk - 1 + kp
501 END IF
502*
503* ============================================================
504*
505* Test for the second and third stopping criteria.
506* NOTE: There is no need to test for ABSTOL >= ZERO, since
507* MAXC2NRMK is non-negative. Similarly, there is no need
508* to test for RELTOL >= ZERO, since RELMAXC2NRMK is
509* non-negative.
510* We need to check the condition only if the
511* column index (same as row index) of the original whole
512* matrix is larger than 1, since the condition for whole
513* original matrix is checked in the main routine.
514
515 relmaxc2nrmk = maxc2nrmk / maxc2nrm
516*
517 IF( maxc2nrmk.LE.abstol .OR. relmaxc2nrmk.LE.reltol ) THEN
518*
519* Set K, the number of factorized columns.
520*
521 k = kk - 1
522*
523* Set TAUs corresponding to the columns that were not
524* factorized to ZERO, i.e. set TAU(KK:MINMNFACT) to ZERO.
525*
526 DO j = kk, minmnfact
527 tau( j ) = zero
528 END DO
529*
530* Return from the routine.
531*
532 RETURN
533*
534 END IF
535*
536* ============================================================
537*
538* End ELSE of IF(I.EQ.1)
539*
540 END IF
541*
542* ===============================================================
543*
544* If the pivot column is not the first column of the
545* subblock A(1:M,KK:N):
546* 1) swap the KK-th column and the KP-th pivot column
547* in A(1:M,1:N);
548* 2) copy the KK-th element into the KP-th element of the partial
549* and exact 2-norm vectors VN1 and VN2. ( Swap is not needed
550* for VN1 and VN2 since we use the element with the index
551* larger than KK in the next loop step.)
552* 3) Save the pivot interchange with the indices relative to the
553* the original matrix A, not the block A(1:M,1:N).
554*
555 IF( kp.NE.kk ) THEN
556 CALL dswap( m, a( 1, kp ), 1, a( 1, kk ), 1 )
557 vn1( kp ) = vn1( kk )
558 vn2( kp ) = vn2( kk )
559 itemp = jpiv( kp )
560 jpiv( kp ) = jpiv( kk )
561 jpiv( kk ) = itemp
562 END IF
563*
564* Generate elementary reflector H(KK) using the column A(I:M,KK),
565* if the column has more than one element, otherwise
566* the elementary reflector would be an identity matrix,
567* and TAU(KK) = ZERO.
568*
569 IF( i.LT.m ) THEN
570 CALL dlarfg( m-i+1, a( i, kk ), a( i+1, kk ), 1,
571 $ tau( kk ) )
572 ELSE
573 tau( kk ) = zero
574 END IF
575*
576* Check if TAU(KK) contains NaN, set INFO parameter
577* to the column number where NaN is found and return from
578* the routine.
579* NOTE: There is no need to check TAU(KK) for Inf,
580* since DLARFG cannot produce TAU(KK) or Householder vector
581* below the diagonal containing Inf. Only BETA on the diagonal,
582* returned by DLARFG can contain Inf, which requires
583* TAU(KK) to contain NaN. Therefore, this case of generating Inf
584* by DLARFG is covered by checking TAU(KK) for NaN.
585*
586 IF( disnan( tau(kk) ) ) THEN
587 k = kk - 1
588 info = kk
589*
590* Set MAXC2NRMK and RELMAXC2NRMK to NaN.
591*
592 maxc2nrmk = tau( kk )
593 relmaxc2nrmk = tau( kk )
594*
595* Array TAU(KK:MINMNFACT) is not set and contains
596* undefined elements, except the first element TAU(KK) = NaN.
597*
598 RETURN
599 END IF
600*
601* Apply H(KK)**T to A(I:M,KK+1:N+NRHS) from the left.
602* ( If M >= N, then at KK = N there is no residual matrix,
603* i.e. no columns of A to update, only columns of B.
604* If M < N, then at KK = M-IOFFSET, I = M and we have a
605* one-row residual matrix in A and the elementary
606* reflector is a unit matrix, TAU(KK) = ZERO, i.e. no update
607* is needed for the residual matrix in A and the
608* right-hand-side-matrix in B.
609* Therefore, we update only if
610* KK < MINMNUPDT = min(M-IOFFSET, N+NRHS)
611* condition is satisfied, not only KK < N+NRHS )
612*
613 IF( kk.LT.minmnupdt ) THEN
614 CALL dlarf1f( 'Left', m-i+1, n+nrhs-kk, a( i, kk ), 1,
615 $ tau( kk ), a( i, kk+1 ), lda, work( 1 ) )
616 END IF
617*
618 IF( kk.LT.minmnfact ) THEN
619*
620* Update the partial column 2-norms for the residual matrix,
621* only if the residual matrix A(I+1:M,KK+1:N) exists, i.e.
622* when KK < min(M-IOFFSET, N).
623*
624 DO j = kk + 1, n
625 IF( vn1( j ).NE.zero ) THEN
626*
627* NOTE: The following lines follow from the analysis in
628* Lapack Working Note 176.
629*
630 temp = one - ( abs( a( i, j ) ) / vn1( j ) )**2
631 temp = max( temp, zero )
632 temp2 = temp*( vn1( j ) / vn2( j ) )**2
633 IF( temp2 .LE. tol3z ) THEN
634*
635* Compute the column 2-norm for the partial
636* column A(I+1:M,J) by explicitly computing it,
637* and store it in both partial 2-norm vector VN1
638* and exact column 2-norm vector VN2.
639*
640 vn1( j ) = dnrm2( m-i, a( i+1, j ), 1 )
641 vn2( j ) = vn1( j )
642*
643 ELSE
644*
645* Update the column 2-norm for the partial
646* column A(I+1:M,J) by removing one
647* element A(I,J) and store it in partial
648* 2-norm vector VN1.
649*
650 vn1( j ) = vn1( j )*sqrt( temp )
651*
652 END IF
653 END IF
654 END DO
655*
656 END IF
657*
658* End factorization loop
659*
660 END DO
661*
662* If we reached this point, all colunms have been factorized,
663* i.e. no condition was triggered to exit the routine.
664* Set the number of factorized columns.
665*
666 k = kmax
667*
668* We reached the end of the loop, i.e. all KMAX columns were
669* factorized, we need to set MAXC2NRMK and RELMAXC2NRMK before
670* we return.
671*
672 IF( k.LT.minmnfact ) THEN
673*
674 jmaxc2nrm = k + idamax( n-k, vn1( k+1 ), 1 )
675 maxc2nrmk = vn1( jmaxc2nrm )
676*
677 IF( k.EQ.0 ) THEN
678 relmaxc2nrmk = one
679 ELSE
680 relmaxc2nrmk = maxc2nrmk / maxc2nrm
681 END IF
682*
683 ELSE
684 maxc2nrmk = zero
685 relmaxc2nrmk = zero
686 END IF
687*
688* We reached the end of the loop, i.e. all KMAX columns were
689* factorized, set TAUs corresponding to the columns that were
690* not factorized to ZERO, i.e. TAU(K+1:MINMNFACT) set to ZERO.
691*
692 DO j = k + 1, minmnfact
693 tau( j ) = zero
694 END DO
695*
696 RETURN
697*
698* End of DLAQP2RK
699*
integer function idamax(n, dx, incx)
IDAMAX
Definition idamax.f:71
logical function disnan(din)
DISNAN tests input for NaN.
Definition disnan.f:57
double precision function dlamch(cmach)
DLAMCH
Definition dlamch.f:69
subroutine dlarf1f(side, m, n, v, incv, tau, c, ldc, work)
DLARF1F applies an elementary reflector to a general rectangular
Definition dlarf1f.f:157
subroutine dlarfg(n, alpha, x, incx, tau)
DLARFG generates an elementary reflector (Householder matrix).
Definition dlarfg.f:104
real(wp) function dnrm2(n, x, incx)
DNRM2
Definition dnrm2.f90:89
subroutine dswap(n, dx, incx, dy, incy)
DSWAP
Definition dswap.f:82
Here is the call graph for this function:
Here is the caller graph for this function: