LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
|
subroutine dsgesv | ( | integer | n, |
integer | nrhs, | ||
double precision, dimension( lda, * ) | a, | ||
integer | lda, | ||
integer, dimension( * ) | ipiv, | ||
double precision, dimension( ldb, * ) | b, | ||
integer | ldb, | ||
double precision, dimension( ldx, * ) | x, | ||
integer | ldx, | ||
double precision, dimension( n, * ) | work, | ||
real, dimension( * ) | swork, | ||
integer | iter, | ||
integer | info | ||
) |
DSGESV computes the solution to system of linear equations A * X = B for GE matrices (mixed precision with iterative refinement)
Download DSGESV + dependencies [TGZ] [ZIP] [TXT]
DSGESV computes the solution to a real system of linear equations A * X = B, where A is an N-by-N matrix and X and B are N-by-NRHS matrices. DSGESV first attempts to factorize the matrix in SINGLE PRECISION and use this factorization within an iterative refinement procedure to produce a solution with DOUBLE PRECISION normwise backward error quality (see below). If the approach fails the method switches to a DOUBLE PRECISION factorization and solve. The iterative refinement is not going to be a winning strategy if the ratio SINGLE PRECISION performance over DOUBLE PRECISION performance is too small. A reasonable strategy should take the number of right-hand sides and the size of the matrix into account. This might be done with a call to ILAENV in the future. Up to now, we always try iterative refinement. The iterative refinement process is stopped if ITER > ITERMAX or for all the RHS we have: RNRM < SQRT(N)*XNRM*ANRM*EPS*BWDMAX where o ITER is the number of the current iteration in the iterative refinement process o RNRM is the infinity-norm of the residual o XNRM is the infinity-norm of the solution o ANRM is the infinity-operator-norm of the matrix A o EPS is the machine epsilon returned by DLAMCH('Epsilon') The value ITERMAX and BWDMAX are fixed to 30 and 1.0D+00 respectively.
[in] | N | N is INTEGER The number of linear equations, i.e., the order of the matrix A. N >= 0. |
[in] | NRHS | NRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0. |
[in,out] | A | A is DOUBLE PRECISION array, dimension (LDA,N) On entry, the N-by-N coefficient matrix A. On exit, if iterative refinement has been successfully used (INFO = 0 and ITER >= 0, see description below), then A is unchanged, if double precision factorization has been used (INFO = 0 and ITER < 0, see description below), then the array A contains the factors L and U from the factorization A = P*L*U; the unit diagonal elements of L are not stored. |
[in] | LDA | LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N). |
[out] | IPIV | IPIV is INTEGER array, dimension (N) The pivot indices that define the permutation matrix P; row i of the matrix was interchanged with row IPIV(i). Corresponds either to the single precision factorization (if INFO = 0 and ITER >= 0) or the double precision factorization (if INFO = 0 and ITER < 0). |
[in] | B | B is DOUBLE PRECISION array, dimension (LDB,NRHS) The N-by-NRHS right hand side matrix B. |
[in] | LDB | LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N). |
[out] | X | X is DOUBLE PRECISION array, dimension (LDX,NRHS) If INFO = 0, the N-by-NRHS solution matrix X. |
[in] | LDX | LDX is INTEGER The leading dimension of the array X. LDX >= max(1,N). |
[out] | WORK | WORK is DOUBLE PRECISION array, dimension (N,NRHS) This array is used to hold the residual vectors. |
[out] | SWORK | SWORK is REAL array, dimension (N*(N+NRHS)) This array is used to use the single precision matrix and the right-hand sides or solutions in single precision. |
[out] | ITER | ITER is INTEGER < 0: iterative refinement has failed, double precision factorization has been performed -1 : the routine fell back to full precision for implementation- or machine-specific reasons -2 : narrowing the precision induced an overflow, the routine fell back to full precision -3 : failure of SGETRF -31: stop the iterative refinement after the 30th iterations > 0: iterative refinement has been successfully used. Returns the number of iterations |
[out] | INFO | INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, U(i,i) computed in DOUBLE PRECISION is exactly zero. The factorization has been completed, but the factor U is exactly singular, so the solution could not be computed. |
Definition at line 193 of file dsgesv.f.