LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ ssbgvd()

subroutine ssbgvd ( character jobz,
character uplo,
integer n,
integer ka,
integer kb,
real, dimension( ldab, * ) ab,
integer ldab,
real, dimension( ldbb, * ) bb,
integer ldbb,
real, dimension( * ) w,
real, dimension( ldz, * ) z,
integer ldz,
real, dimension( * ) work,
integer lwork,
integer, dimension( * ) iwork,
integer liwork,
integer info )

SSBGVD

Download SSBGVD + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> SSBGVD computes all the eigenvalues, and optionally, the eigenvectors
!> of a real generalized symmetric-definite banded eigenproblem, of the
!> form A*x=(lambda)*B*x.  Here A and B are assumed to be symmetric and
!> banded, and B is also positive definite.  If eigenvectors are
!> desired, it uses a divide and conquer algorithm.
!>
!> 
Parameters
[in]JOBZ
!>          JOBZ is CHARACTER*1
!>          = 'N':  Compute eigenvalues only;
!>          = 'V':  Compute eigenvalues and eigenvectors.
!> 
[in]UPLO
!>          UPLO is CHARACTER*1
!>          = 'U':  Upper triangles of A and B are stored;
!>          = 'L':  Lower triangles of A and B are stored.
!> 
[in]N
!>          N is INTEGER
!>          The order of the matrices A and B.  N >= 0.
!> 
[in]KA
!>          KA is INTEGER
!>          The number of superdiagonals of the matrix A if UPLO = 'U',
!>          or the number of subdiagonals if UPLO = 'L'.  KA >= 0.
!> 
[in]KB
!>          KB is INTEGER
!>          The number of superdiagonals of the matrix B if UPLO = 'U',
!>          or the number of subdiagonals if UPLO = 'L'.  KB >= 0.
!> 
[in,out]AB
!>          AB is REAL array, dimension (LDAB, N)
!>          On entry, the upper or lower triangle of the symmetric band
!>          matrix A, stored in the first ka+1 rows of the array.  The
!>          j-th column of A is stored in the j-th column of the array AB
!>          as follows:
!>          if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
!>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+ka).
!>
!>          On exit, the contents of AB are destroyed.
!> 
[in]LDAB
!>          LDAB is INTEGER
!>          The leading dimension of the array AB.  LDAB >= KA+1.
!> 
[in,out]BB
!>          BB is REAL array, dimension (LDBB, N)
!>          On entry, the upper or lower triangle of the symmetric band
!>          matrix B, stored in the first kb+1 rows of the array.  The
!>          j-th column of B is stored in the j-th column of the array BB
!>          as follows:
!>          if UPLO = 'U', BB(ka+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;
!>          if UPLO = 'L', BB(1+i-j,j)    = B(i,j) for j<=i<=min(n,j+kb).
!>
!>          On exit, the factor S from the split Cholesky factorization
!>          B = S**T*S, as returned by SPBSTF.
!> 
[in]LDBB
!>          LDBB is INTEGER
!>          The leading dimension of the array BB.  LDBB >= KB+1.
!> 
[out]W
!>          W is REAL array, dimension (N)
!>          If INFO = 0, the eigenvalues in ascending order.
!> 
[out]Z
!>          Z is REAL array, dimension (LDZ, N)
!>          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
!>          eigenvectors, with the i-th column of Z holding the
!>          eigenvector associated with W(i).  The eigenvectors are
!>          normalized so Z**T*B*Z = I.
!>          If JOBZ = 'N', then Z is not referenced.
!> 
[in]LDZ
!>          LDZ is INTEGER
!>          The leading dimension of the array Z.  LDZ >= 1, and if
!>          JOBZ = 'V', LDZ >= max(1,N).
!> 
[out]WORK
!>          WORK is REAL array, dimension (MAX(1,LWORK))
!>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
!> 
[in]LWORK
!>          LWORK is INTEGER
!>          The dimension of the array WORK.
!>          If N <= 1,               LWORK >= 1.
!>          If JOBZ = 'N' and N > 1, LWORK >= 3*N.
!>          If JOBZ = 'V' and N > 1, LWORK >= 1 + 5*N + 2*N**2.
!>
!>          If LWORK = -1, then a workspace query is assumed; the routine
!>          only calculates the optimal sizes of the WORK and IWORK
!>          arrays, returns these values as the first entries of the WORK
!>          and IWORK arrays, and no error message related to LWORK or
!>          LIWORK is issued by XERBLA.
!> 
[out]IWORK
!>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
!>          On exit, if LIWORK > 0, IWORK(1) returns the optimal LIWORK.
!> 
[in]LIWORK
!>          LIWORK is INTEGER
!>          The dimension of the array IWORK.
!>          If JOBZ  = 'N' or N <= 1, LIWORK >= 1.
!>          If JOBZ  = 'V' and N > 1, LIWORK >= 3 + 5*N.
!>
!>          If LIWORK = -1, then a workspace query is assumed; the
!>          routine only calculates the optimal sizes of the WORK and
!>          IWORK arrays, returns these values as the first entries of
!>          the WORK and IWORK arrays, and no error message related to
!>          LWORK or LIWORK is issued by XERBLA.
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!>          > 0:  if INFO = i, and i is:
!>             <= N:  the algorithm failed to converge:
!>                    i off-diagonal elements of an intermediate
!>                    tridiagonal form did not converge to zero;
!>             > N:   if INFO = N + i, for 1 <= i <= N, then SPBSTF
!>                    returned INFO = i: B is not positive definite.
!>                    The factorization of B could not be completed and
!>                    no eigenvalues or eigenvectors were computed.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA

Definition at line 217 of file ssbgvd.f.

220*
221* -- LAPACK driver routine --
222* -- LAPACK is a software package provided by Univ. of Tennessee, --
223* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
224*
225* .. Scalar Arguments ..
226 CHARACTER JOBZ, UPLO
227 INTEGER INFO, KA, KB, LDAB, LDBB, LDZ, LIWORK, LWORK, N
228* ..
229* .. Array Arguments ..
230 INTEGER IWORK( * )
231 REAL AB( LDAB, * ), BB( LDBB, * ), W( * ),
232 $ WORK( * ), Z( LDZ, * )
233* ..
234*
235* =====================================================================
236*
237* .. Parameters ..
238 REAL ONE, ZERO
239 parameter( one = 1.0e+0, zero = 0.0e+0 )
240* ..
241* .. Local Scalars ..
242 LOGICAL LQUERY, UPPER, WANTZ
243 CHARACTER VECT
244 INTEGER IINFO, INDE, INDWK2, INDWRK, LIWMIN, LLWRK2,
245 $ LWMIN
246* ..
247* .. External Functions ..
248 LOGICAL LSAME
249 REAL SROUNDUP_LWORK
250 EXTERNAL lsame, sroundup_lwork
251* ..
252* .. External Subroutines ..
253 EXTERNAL sgemm, slacpy, spbstf, ssbgst, ssbtrd,
254 $ sstedc,
255 $ ssterf, xerbla
256* ..
257* .. Executable Statements ..
258*
259* Test the input parameters.
260*
261 wantz = lsame( jobz, 'V' )
262 upper = lsame( uplo, 'U' )
263 lquery = ( lwork.EQ.-1 .OR. liwork.EQ.-1 )
264*
265 info = 0
266 IF( n.LE.1 ) THEN
267 liwmin = 1
268 lwmin = 1
269 ELSE IF( wantz ) THEN
270 liwmin = 3 + 5*n
271 lwmin = 1 + 5*n + 2*n**2
272 ELSE
273 liwmin = 1
274 lwmin = 2*n
275 END IF
276*
277 IF( .NOT.( wantz .OR. lsame( jobz, 'N' ) ) ) THEN
278 info = -1
279 ELSE IF( .NOT.( upper .OR. lsame( uplo, 'L' ) ) ) THEN
280 info = -2
281 ELSE IF( n.LT.0 ) THEN
282 info = -3
283 ELSE IF( ka.LT.0 ) THEN
284 info = -4
285 ELSE IF( kb.LT.0 .OR. kb.GT.ka ) THEN
286 info = -5
287 ELSE IF( ldab.LT.ka+1 ) THEN
288 info = -7
289 ELSE IF( ldbb.LT.kb+1 ) THEN
290 info = -9
291 ELSE IF( ldz.LT.1 .OR. ( wantz .AND. ldz.LT.n ) ) THEN
292 info = -12
293 END IF
294*
295 IF( info.EQ.0 ) THEN
296 work( 1 ) = sroundup_lwork(lwmin)
297 iwork( 1 ) = liwmin
298*
299 IF( lwork.LT.lwmin .AND. .NOT.lquery ) THEN
300 info = -14
301 ELSE IF( liwork.LT.liwmin .AND. .NOT.lquery ) THEN
302 info = -16
303 END IF
304 END IF
305*
306 IF( info.NE.0 ) THEN
307 CALL xerbla( 'SSBGVD', -info )
308 RETURN
309 ELSE IF( lquery ) THEN
310 RETURN
311 END IF
312*
313* Quick return if possible
314*
315 IF( n.EQ.0 )
316 $ RETURN
317*
318* Form a split Cholesky factorization of B.
319*
320 CALL spbstf( uplo, n, kb, bb, ldbb, info )
321 IF( info.NE.0 ) THEN
322 info = n + info
323 RETURN
324 END IF
325*
326* Transform problem to standard eigenvalue problem.
327*
328 inde = 1
329 indwrk = inde + n
330 indwk2 = indwrk + n*n
331 llwrk2 = lwork - indwk2 + 1
332 CALL ssbgst( jobz, uplo, n, ka, kb, ab, ldab, bb, ldbb, z, ldz,
333 $ work, iinfo )
334*
335* Reduce to tridiagonal form.
336*
337 IF( wantz ) THEN
338 vect = 'U'
339 ELSE
340 vect = 'N'
341 END IF
342 CALL ssbtrd( vect, uplo, n, ka, ab, ldab, w, work( inde ), z,
343 $ ldz,
344 $ work( indwrk ), iinfo )
345*
346* For eigenvalues only, call SSTERF. For eigenvectors, call SSTEDC.
347*
348 IF( .NOT.wantz ) THEN
349 CALL ssterf( n, w, work( inde ), info )
350 ELSE
351 CALL sstedc( 'I', n, w, work( inde ), work( indwrk ), n,
352 $ work( indwk2 ), llwrk2, iwork, liwork, info )
353 CALL sgemm( 'N', 'N', n, n, n, one, z, ldz, work( indwrk ),
354 $ n,
355 $ zero, work( indwk2 ), n )
356 CALL slacpy( 'A', n, n, work( indwk2 ), n, z, ldz )
357 END IF
358*
359 work( 1 ) = sroundup_lwork(lwmin)
360 iwork( 1 ) = liwmin
361*
362 RETURN
363*
364* End of SSBGVD
365*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine sgemm(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
SGEMM
Definition sgemm.f:188
subroutine ssbgst(vect, uplo, n, ka, kb, ab, ldab, bb, ldbb, x, ldx, work, info)
SSBGST
Definition ssbgst.f:158
subroutine ssbtrd(vect, uplo, n, kd, ab, ldab, d, e, q, ldq, work, info)
SSBTRD
Definition ssbtrd.f:161
subroutine slacpy(uplo, m, n, a, lda, b, ldb)
SLACPY copies all or part of one two-dimensional array to another.
Definition slacpy.f:101
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
subroutine spbstf(uplo, n, kd, ab, ldab, info)
SPBSTF
Definition spbstf.f:150
real function sroundup_lwork(lwork)
SROUNDUP_LWORK
subroutine sstedc(compz, n, d, e, z, ldz, work, lwork, iwork, liwork, info)
SSTEDC
Definition sstedc.f:180
subroutine ssterf(n, d, e, info)
SSTERF
Definition ssterf.f:84
Here is the call graph for this function:
Here is the caller graph for this function: