LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ spbstf()

subroutine spbstf ( character uplo,
integer n,
integer kd,
real, dimension( ldab, * ) ab,
integer ldab,
integer info )

SPBSTF

Download SPBSTF + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> SPBSTF computes a split Cholesky factorization of a real
!> symmetric positive definite band matrix A.
!>
!> This routine is designed to be used in conjunction with SSBGST.
!>
!> The factorization has the form  A = S**T*S  where S is a band matrix
!> of the same bandwidth as A and the following structure:
!>
!>   S = ( U    )
!>       ( M  L )
!>
!> where U is upper triangular of order m = (n+kd)/2, and L is lower
!> triangular of order n-m.
!> 
Parameters
[in]UPLO
!>          UPLO is CHARACTER*1
!>          = 'U':  Upper triangle of A is stored;
!>          = 'L':  Lower triangle of A is stored.
!> 
[in]N
!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.
!> 
[in]KD
!>          KD is INTEGER
!>          The number of superdiagonals of the matrix A if UPLO = 'U',
!>          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
!> 
[in,out]AB
!>          AB is REAL array, dimension (LDAB,N)
!>          On entry, the upper or lower triangle of the symmetric band
!>          matrix A, stored in the first kd+1 rows of the array.  The
!>          j-th column of A is stored in the j-th column of the array AB
!>          as follows:
!>          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
!>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
!>
!>          On exit, if INFO = 0, the factor S from the split Cholesky
!>          factorization A = S**T*S. See Further Details.
!> 
[in]LDAB
!>          LDAB is INTEGER
!>          The leading dimension of the array AB.  LDAB >= KD+1.
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0: successful exit
!>          < 0: if INFO = -i, the i-th argument had an illegal value
!>          > 0: if INFO = i, the factorization could not be completed,
!>               because the updated element a(i,i) was negative; the
!>               matrix A is not positive definite.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!>
!>  The band storage scheme is illustrated by the following example, when
!>  N = 7, KD = 2:
!>
!>  S = ( s11  s12  s13                     )
!>      (      s22  s23  s24                )
!>      (           s33  s34                )
!>      (                s44                )
!>      (           s53  s54  s55           )
!>      (                s64  s65  s66      )
!>      (                     s75  s76  s77 )
!>
!>  If UPLO = 'U', the array AB holds:
!>
!>  on entry:                          on exit:
!>
!>   *    *   a13  a24  a35  a46  a57   *    *   s13  s24  s53  s64  s75
!>   *   a12  a23  a34  a45  a56  a67   *   s12  s23  s34  s54  s65  s76
!>  a11  a22  a33  a44  a55  a66  a77  s11  s22  s33  s44  s55  s66  s77
!>
!>  If UPLO = 'L', the array AB holds:
!>
!>  on entry:                          on exit:
!>
!>  a11  a22  a33  a44  a55  a66  a77  s11  s22  s33  s44  s55  s66  s77
!>  a21  a32  a43  a54  a65  a76   *   s12  s23  s34  s54  s65  s76   *
!>  a31  a42  a53  a64  a64   *    *   s13  s24  s53  s64  s75   *    *
!>
!>  Array elements marked * are not used by the routine.
!> 

Definition at line 149 of file spbstf.f.

150*
151* -- LAPACK computational routine --
152* -- LAPACK is a software package provided by Univ. of Tennessee, --
153* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
154*
155* .. Scalar Arguments ..
156 CHARACTER UPLO
157 INTEGER INFO, KD, LDAB, N
158* ..
159* .. Array Arguments ..
160 REAL AB( LDAB, * )
161* ..
162*
163* =====================================================================
164*
165* .. Parameters ..
166 REAL ONE, ZERO
167 parameter( one = 1.0e+0, zero = 0.0e+0 )
168* ..
169* .. Local Scalars ..
170 LOGICAL UPPER
171 INTEGER J, KLD, KM, M
172 REAL AJJ
173* ..
174* .. External Functions ..
175 LOGICAL LSAME
176 EXTERNAL lsame
177* ..
178* .. External Subroutines ..
179 EXTERNAL sscal, ssyr, xerbla
180* ..
181* .. Intrinsic Functions ..
182 INTRINSIC max, min, sqrt
183* ..
184* .. Executable Statements ..
185*
186* Test the input parameters.
187*
188 info = 0
189 upper = lsame( uplo, 'U' )
190 IF( .NOT.upper .AND. .NOT.lsame( uplo, 'L' ) ) THEN
191 info = -1
192 ELSE IF( n.LT.0 ) THEN
193 info = -2
194 ELSE IF( kd.LT.0 ) THEN
195 info = -3
196 ELSE IF( ldab.LT.kd+1 ) THEN
197 info = -5
198 END IF
199 IF( info.NE.0 ) THEN
200 CALL xerbla( 'SPBSTF', -info )
201 RETURN
202 END IF
203*
204* Quick return if possible
205*
206 IF( n.EQ.0 )
207 $ RETURN
208*
209 kld = max( 1, ldab-1 )
210*
211* Set the splitting point m.
212*
213 m = ( n+kd ) / 2
214*
215 IF( upper ) THEN
216*
217* Factorize A(m+1:n,m+1:n) as L**T*L, and update A(1:m,1:m).
218*
219 DO 10 j = n, m + 1, -1
220*
221* Compute s(j,j) and test for non-positive-definiteness.
222*
223 ajj = ab( kd+1, j )
224 IF( ajj.LE.zero )
225 $ GO TO 50
226 ajj = sqrt( ajj )
227 ab( kd+1, j ) = ajj
228 km = min( j-1, kd )
229*
230* Compute elements j-km:j-1 of the j-th column and update the
231* the leading submatrix within the band.
232*
233 CALL sscal( km, one / ajj, ab( kd+1-km, j ), 1 )
234 CALL ssyr( 'Upper', km, -one, ab( kd+1-km, j ), 1,
235 $ ab( kd+1, j-km ), kld )
236 10 CONTINUE
237*
238* Factorize the updated submatrix A(1:m,1:m) as U**T*U.
239*
240 DO 20 j = 1, m
241*
242* Compute s(j,j) and test for non-positive-definiteness.
243*
244 ajj = ab( kd+1, j )
245 IF( ajj.LE.zero )
246 $ GO TO 50
247 ajj = sqrt( ajj )
248 ab( kd+1, j ) = ajj
249 km = min( kd, m-j )
250*
251* Compute elements j+1:j+km of the j-th row and update the
252* trailing submatrix within the band.
253*
254 IF( km.GT.0 ) THEN
255 CALL sscal( km, one / ajj, ab( kd, j+1 ), kld )
256 CALL ssyr( 'Upper', km, -one, ab( kd, j+1 ), kld,
257 $ ab( kd+1, j+1 ), kld )
258 END IF
259 20 CONTINUE
260 ELSE
261*
262* Factorize A(m+1:n,m+1:n) as L**T*L, and update A(1:m,1:m).
263*
264 DO 30 j = n, m + 1, -1
265*
266* Compute s(j,j) and test for non-positive-definiteness.
267*
268 ajj = ab( 1, j )
269 IF( ajj.LE.zero )
270 $ GO TO 50
271 ajj = sqrt( ajj )
272 ab( 1, j ) = ajj
273 km = min( j-1, kd )
274*
275* Compute elements j-km:j-1 of the j-th row and update the
276* trailing submatrix within the band.
277*
278 CALL sscal( km, one / ajj, ab( km+1, j-km ), kld )
279 CALL ssyr( 'Lower', km, -one, ab( km+1, j-km ), kld,
280 $ ab( 1, j-km ), kld )
281 30 CONTINUE
282*
283* Factorize the updated submatrix A(1:m,1:m) as U**T*U.
284*
285 DO 40 j = 1, m
286*
287* Compute s(j,j) and test for non-positive-definiteness.
288*
289 ajj = ab( 1, j )
290 IF( ajj.LE.zero )
291 $ GO TO 50
292 ajj = sqrt( ajj )
293 ab( 1, j ) = ajj
294 km = min( kd, m-j )
295*
296* Compute elements j+1:j+km of the j-th column and update the
297* trailing submatrix within the band.
298*
299 IF( km.GT.0 ) THEN
300 CALL sscal( km, one / ajj, ab( 2, j ), 1 )
301 CALL ssyr( 'Lower', km, -one, ab( 2, j ), 1,
302 $ ab( 1, j+1 ), kld )
303 END IF
304 40 CONTINUE
305 END IF
306 RETURN
307*
308 50 CONTINUE
309 info = j
310 RETURN
311*
312* End of SPBSTF
313*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine ssyr(uplo, n, alpha, x, incx, a, lda)
SSYR
Definition ssyr.f:132
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
subroutine sscal(n, sa, sx, incx)
SSCAL
Definition sscal.f:79
Here is the call graph for this function:
Here is the caller graph for this function: