LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
sgglse.f
Go to the documentation of this file.
1*> \brief <b> SGGLSE solves overdetermined or underdetermined systems for OTHER matrices</b>
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download SGGLSE + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgglse.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgglse.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgglse.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18* Definition:
19* ===========
20*
21* SUBROUTINE SGGLSE( M, N, P, A, LDA, B, LDB, C, D, X, WORK, LWORK,
22* INFO )
23*
24* .. Scalar Arguments ..
25* INTEGER INFO, LDA, LDB, LWORK, M, N, P
26* ..
27* .. Array Arguments ..
28* REAL A( LDA, * ), B( LDB, * ), C( * ), D( * ),
29* $ WORK( * ), X( * )
30* ..
31*
32*
33*> \par Purpose:
34* =============
35*>
36*> \verbatim
37*>
38*> SGGLSE solves the linear equality-constrained least squares (LSE)
39*> problem:
40*>
41*> minimize || c - A*x ||_2 subject to B*x = d
42*>
43*> where A is an M-by-N matrix, B is a P-by-N matrix, c is a given
44*> M-vector, and d is a given P-vector. It is assumed that
45*> P <= N <= M+P, and
46*>
47*> rank(B) = P and rank( (A) ) = N.
48*> ( (B) )
49*>
50*> These conditions ensure that the LSE problem has a unique solution,
51*> which is obtained using a generalized RQ factorization of the
52*> matrices (B, A) given by
53*>
54*> B = (0 R)*Q, A = Z*T*Q.
55*> \endverbatim
56*
57* Arguments:
58* ==========
59*
60*> \param[in] M
61*> \verbatim
62*> M is INTEGER
63*> The number of rows of the matrix A. M >= 0.
64*> \endverbatim
65*>
66*> \param[in] N
67*> \verbatim
68*> N is INTEGER
69*> The number of columns of the matrices A and B. N >= 0.
70*> \endverbatim
71*>
72*> \param[in] P
73*> \verbatim
74*> P is INTEGER
75*> The number of rows of the matrix B. 0 <= P <= N <= M+P.
76*> \endverbatim
77*>
78*> \param[in,out] A
79*> \verbatim
80*> A is REAL array, dimension (LDA,N)
81*> On entry, the M-by-N matrix A.
82*> On exit, the elements on and above the diagonal of the array
83*> contain the min(M,N)-by-N upper trapezoidal matrix T.
84*> \endverbatim
85*>
86*> \param[in] LDA
87*> \verbatim
88*> LDA is INTEGER
89*> The leading dimension of the array A. LDA >= max(1,M).
90*> \endverbatim
91*>
92*> \param[in,out] B
93*> \verbatim
94*> B is REAL array, dimension (LDB,N)
95*> On entry, the P-by-N matrix B.
96*> On exit, the upper triangle of the subarray B(1:P,N-P+1:N)
97*> contains the P-by-P upper triangular matrix R.
98*> \endverbatim
99*>
100*> \param[in] LDB
101*> \verbatim
102*> LDB is INTEGER
103*> The leading dimension of the array B. LDB >= max(1,P).
104*> \endverbatim
105*>
106*> \param[in,out] C
107*> \verbatim
108*> C is REAL array, dimension (M)
109*> On entry, C contains the right hand side vector for the
110*> least squares part of the LSE problem.
111*> On exit, the residual sum of squares for the solution
112*> is given by the sum of squares of elements N-P+1 to M of
113*> vector C.
114*> \endverbatim
115*>
116*> \param[in,out] D
117*> \verbatim
118*> D is REAL array, dimension (P)
119*> On entry, D contains the right hand side vector for the
120*> constrained equation.
121*> On exit, D is destroyed.
122*> \endverbatim
123*>
124*> \param[out] X
125*> \verbatim
126*> X is REAL array, dimension (N)
127*> On exit, X is the solution of the LSE problem.
128*> \endverbatim
129*>
130*> \param[out] WORK
131*> \verbatim
132*> WORK is REAL array, dimension (MAX(1,LWORK))
133*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
134*> \endverbatim
135*>
136*> \param[in] LWORK
137*> \verbatim
138*> LWORK is INTEGER
139*> The dimension of the array WORK. LWORK >= max(1,M+N+P).
140*> For optimum performance LWORK >= P+min(M,N)+max(M,N)*NB,
141*> where NB is an upper bound for the optimal blocksizes for
142*> SGEQRF, SGERQF, SORMQR and SORMRQ.
143*>
144*> If LWORK = -1, then a workspace query is assumed; the routine
145*> only calculates the optimal size of the WORK array, returns
146*> this value as the first entry of the WORK array, and no error
147*> message related to LWORK is issued by XERBLA.
148*> \endverbatim
149*>
150*> \param[out] INFO
151*> \verbatim
152*> INFO is INTEGER
153*> = 0: successful exit.
154*> < 0: if INFO = -i, the i-th argument had an illegal value.
155*> = 1: the upper triangular factor R associated with B in the
156*> generalized RQ factorization of the pair (B, A) is
157*> singular, so that rank(B) < P; the least squares
158*> solution could not be computed.
159*> = 2: the (N-P) by (N-P) part of the upper trapezoidal factor
160*> T associated with A in the generalized RQ factorization
161*> of the pair (B, A) is singular, so that
162*> rank( (A) ) < N; the least squares solution could not
163*> ( (B) )
164*> be computed.
165*> \endverbatim
166*
167* Authors:
168* ========
169*
170*> \author Univ. of Tennessee
171*> \author Univ. of California Berkeley
172*> \author Univ. of Colorado Denver
173*> \author NAG Ltd.
174*
175*> \ingroup gglse
176*
177* =====================================================================
178 SUBROUTINE sgglse( M, N, P, A, LDA, B, LDB, C, D, X, WORK, LWORK,
179 $ INFO )
180*
181* -- LAPACK driver routine --
182* -- LAPACK is a software package provided by Univ. of Tennessee, --
183* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
184*
185* .. Scalar Arguments ..
186 INTEGER INFO, LDA, LDB, LWORK, M, N, P
187* ..
188* .. Array Arguments ..
189 REAL A( LDA, * ), B( LDB, * ), C( * ), D( * ),
190 $ work( * ), x( * )
191* ..
192*
193* =====================================================================
194*
195* .. Parameters ..
196 REAL ONE
197 parameter( one = 1.0e+0 )
198* ..
199* .. Local Scalars ..
200 LOGICAL LQUERY
201 INTEGER LOPT, LWKMIN, LWKOPT, MN, NB, NB1, NB2, NB3,
202 $ nb4, nr
203* ..
204* .. External Subroutines ..
205 EXTERNAL saxpy, scopy, sgemv, sggrqf, sormqr, sormrq,
207* ..
208* .. External Functions ..
209 INTEGER ILAENV
210 REAL SROUNDUP_LWORK
211 EXTERNAL ilaenv, sroundup_lwork
212* ..
213* .. Intrinsic Functions ..
214 INTRINSIC int, max, min
215* ..
216* .. Executable Statements ..
217*
218* Test the input parameters
219*
220 info = 0
221 mn = min( m, n )
222 lquery = ( lwork.EQ.-1 )
223 IF( m.LT.0 ) THEN
224 info = -1
225 ELSE IF( n.LT.0 ) THEN
226 info = -2
227 ELSE IF( p.LT.0 .OR. p.GT.n .OR. p.LT.n-m ) THEN
228 info = -3
229 ELSE IF( lda.LT.max( 1, m ) ) THEN
230 info = -5
231 ELSE IF( ldb.LT.max( 1, p ) ) THEN
232 info = -7
233 END IF
234*
235* Calculate workspace
236*
237 IF( info.EQ.0) THEN
238 IF( n.EQ.0 ) THEN
239 lwkmin = 1
240 lwkopt = 1
241 ELSE
242 nb1 = ilaenv( 1, 'SGEQRF', ' ', m, n, -1, -1 )
243 nb2 = ilaenv( 1, 'SGERQF', ' ', m, n, -1, -1 )
244 nb3 = ilaenv( 1, 'SORMQR', ' ', m, n, p, -1 )
245 nb4 = ilaenv( 1, 'SORMRQ', ' ', m, n, p, -1 )
246 nb = max( nb1, nb2, nb3, nb4 )
247 lwkmin = m + n + p
248 lwkopt = p + mn + max( m, n )*nb
249 END IF
250 work( 1 ) = sroundup_lwork(lwkopt)
251*
252 IF( lwork.LT.lwkmin .AND. .NOT.lquery ) THEN
253 info = -12
254 END IF
255 END IF
256*
257 IF( info.NE.0 ) THEN
258 CALL xerbla( 'SGGLSE', -info )
259 RETURN
260 ELSE IF( lquery ) THEN
261 RETURN
262 END IF
263*
264* Quick return if possible
265*
266 IF( n.EQ.0 )
267 $ RETURN
268*
269* Compute the GRQ factorization of matrices B and A:
270*
271* B*Q**T = ( 0 T12 ) P Z**T*A*Q**T = ( R11 R12 ) N-P
272* N-P P ( 0 R22 ) M+P-N
273* N-P P
274*
275* where T12 and R11 are upper triangular, and Q and Z are
276* orthogonal.
277*
278 CALL sggrqf( p, m, n, b, ldb, work, a, lda, work( p+1 ),
279 $ work( p+mn+1 ), lwork-p-mn, info )
280 lopt = int( work( p+mn+1 ) )
281*
282* Update c = Z**T *c = ( c1 ) N-P
283* ( c2 ) M+P-N
284*
285 CALL sormqr( 'Left', 'Transpose', m, 1, mn, a, lda, work( p+1 ),
286 $ c, max( 1, m ), work( p+mn+1 ), lwork-p-mn, info )
287 lopt = max( lopt, int( work( p+mn+1 ) ) )
288*
289* Solve T12*x2 = d for x2
290*
291 IF( p.GT.0 ) THEN
292 CALL strtrs( 'Upper', 'No transpose', 'Non-unit', p, 1,
293 $ b( 1, n-p+1 ), ldb, d, p, info )
294*
295 IF( info.GT.0 ) THEN
296 info = 1
297 RETURN
298 END IF
299*
300* Put the solution in X
301*
302 CALL scopy( p, d, 1, x( n-p+1 ), 1 )
303*
304* Update c1
305*
306 CALL sgemv( 'No transpose', n-p, p, -one, a( 1, n-p+1 ), lda,
307 $ d, 1, one, c, 1 )
308 END IF
309*
310* Solve R11*x1 = c1 for x1
311*
312 IF( n.GT.p ) THEN
313 CALL strtrs( 'Upper', 'No transpose', 'Non-unit', n-p, 1,
314 $ a, lda, c, n-p, info )
315*
316 IF( info.GT.0 ) THEN
317 info = 2
318 RETURN
319 END IF
320*
321* Put the solutions in X
322*
323 CALL scopy( n-p, c, 1, x, 1 )
324 END IF
325*
326* Compute the residual vector:
327*
328 IF( m.LT.n ) THEN
329 nr = m + p - n
330 IF( nr.GT.0 )
331 $ CALL sgemv( 'No transpose', nr, n-m, -one, a( n-p+1, m+1 ),
332 $ lda, d( nr+1 ), 1, one, c( n-p+1 ), 1 )
333 ELSE
334 nr = p
335 END IF
336 IF( nr.GT.0 ) THEN
337 CALL strmv( 'Upper', 'No transpose', 'Non unit', nr,
338 $ a( n-p+1, n-p+1 ), lda, d, 1 )
339 CALL saxpy( nr, -one, d, 1, c( n-p+1 ), 1 )
340 END IF
341*
342* Backward transformation x = Q**T*x
343*
344 CALL sormrq( 'Left', 'Transpose', n, 1, p, b, ldb, work( 1 ), x,
345 $ n, work( p+mn+1 ), lwork-p-mn, info )
346 work( 1 ) = p + mn + max( lopt, int( work( p+mn+1 ) ) )
347*
348 RETURN
349*
350* End of SGGLSE
351*
352 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine saxpy(n, sa, sx, incx, sy, incy)
SAXPY
Definition saxpy.f:89
subroutine scopy(n, sx, incx, sy, incy)
SCOPY
Definition scopy.f:82
subroutine sgemv(trans, m, n, alpha, a, lda, x, incx, beta, y, incy)
SGEMV
Definition sgemv.f:158
subroutine sgglse(m, n, p, a, lda, b, ldb, c, d, x, work, lwork, info)
SGGLSE solves overdetermined or underdetermined systems for OTHER matrices
Definition sgglse.f:180
subroutine sggrqf(m, p, n, a, lda, taua, b, ldb, taub, work, lwork, info)
SGGRQF
Definition sggrqf.f:214
subroutine strmv(uplo, trans, diag, n, a, lda, x, incx)
STRMV
Definition strmv.f:147
subroutine strtrs(uplo, trans, diag, n, nrhs, a, lda, b, ldb, info)
STRTRS
Definition strtrs.f:140
subroutine sormqr(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
SORMQR
Definition sormqr.f:168
subroutine sormrq(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
SORMRQ
Definition sormrq.f:168