LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ sormrq()

subroutine sormrq ( character side,
character trans,
integer m,
integer n,
integer k,
real, dimension( lda, * ) a,
integer lda,
real, dimension( * ) tau,
real, dimension( ldc, * ) c,
integer ldc,
real, dimension( * ) work,
integer lwork,
integer info )

SORMRQ

Download SORMRQ + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> SORMRQ overwrites the general real M-by-N matrix C with
!>
!>                 SIDE = 'L'     SIDE = 'R'
!> TRANS = 'N':      Q * C          C * Q
!> TRANS = 'T':      Q**T * C       C * Q**T
!>
!> where Q is a real orthogonal matrix defined as the product of k
!> elementary reflectors
!>
!>       Q = H(1) H(2) . . . H(k)
!>
!> as returned by SGERQF. Q is of order M if SIDE = 'L' and of order N
!> if SIDE = 'R'.
!> 
Parameters
[in]SIDE
!>          SIDE is CHARACTER*1
!>          = 'L': apply Q or Q**T from the Left;
!>          = 'R': apply Q or Q**T from the Right.
!> 
[in]TRANS
!>          TRANS is CHARACTER*1
!>          = 'N':  No transpose, apply Q;
!>          = 'T':  Transpose, apply Q**T.
!> 
[in]M
!>          M is INTEGER
!>          The number of rows of the matrix C. M >= 0.
!> 
[in]N
!>          N is INTEGER
!>          The number of columns of the matrix C. N >= 0.
!> 
[in]K
!>          K is INTEGER
!>          The number of elementary reflectors whose product defines
!>          the matrix Q.
!>          If SIDE = 'L', M >= K >= 0;
!>          if SIDE = 'R', N >= K >= 0.
!> 
[in]A
!>          A is REAL array, dimension
!>                               (LDA,M) if SIDE = 'L',
!>                               (LDA,N) if SIDE = 'R'
!>          The i-th row must contain the vector which defines the
!>          elementary reflector H(i), for i = 1,2,...,k, as returned by
!>          SGERQF in the last k rows of its array argument A.
!> 
[in]LDA
!>          LDA is INTEGER
!>          The leading dimension of the array A. LDA >= max(1,K).
!> 
[in]TAU
!>          TAU is REAL array, dimension (K)
!>          TAU(i) must contain the scalar factor of the elementary
!>          reflector H(i), as returned by SGERQF.
!> 
[in,out]C
!>          C is REAL array, dimension (LDC,N)
!>          On entry, the M-by-N matrix C.
!>          On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
!> 
[in]LDC
!>          LDC is INTEGER
!>          The leading dimension of the array C. LDC >= max(1,M).
!> 
[out]WORK
!>          WORK is REAL array, dimension (MAX(1,LWORK))
!>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
!> 
[in]LWORK
!>          LWORK is INTEGER
!>          The dimension of the array WORK.
!>          If SIDE = 'L', LWORK >= max(1,N);
!>          if SIDE = 'R', LWORK >= max(1,M).
!>          For good performance, LWORK should generally be larger.
!>
!>          If LWORK = -1, then a workspace query is assumed; the routine
!>          only calculates the optimal size of the WORK array, returns
!>          this value as the first entry of the WORK array, and no error
!>          message related to LWORK is issued by XERBLA.
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 164 of file sormrq.f.

166*
167* -- LAPACK computational routine --
168* -- LAPACK is a software package provided by Univ. of Tennessee, --
169* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
170*
171* .. Scalar Arguments ..
172 CHARACTER SIDE, TRANS
173 INTEGER INFO, K, LDA, LDC, LWORK, M, N
174* ..
175* .. Array Arguments ..
176 REAL A( LDA, * ), C( LDC, * ), TAU( * ),
177 $ WORK( * )
178* ..
179*
180* =====================================================================
181*
182* .. Parameters ..
183 INTEGER NBMAX, LDT, TSIZE
184 parameter( nbmax = 64, ldt = nbmax+1,
185 $ tsize = ldt*nbmax )
186* ..
187* .. Local Scalars ..
188 LOGICAL LEFT, LQUERY, NOTRAN
189 CHARACTER TRANST
190 INTEGER I, I1, I2, I3, IB, IINFO, IWT, LDWORK, LWKOPT,
191 $ MI, NB, NBMIN, NI, NQ, NW
192* ..
193* .. External Functions ..
194 LOGICAL LSAME
195 INTEGER ILAENV
196 REAL SROUNDUP_LWORK
197 EXTERNAL lsame, ilaenv, sroundup_lwork
198* ..
199* .. External Subroutines ..
200 EXTERNAL slarfb, slarft, sormr2, xerbla
201* ..
202* .. Intrinsic Functions ..
203 INTRINSIC max, min
204* ..
205* .. Executable Statements ..
206*
207* Test the input arguments
208*
209 info = 0
210 left = lsame( side, 'L' )
211 notran = lsame( trans, 'N' )
212 lquery = ( lwork.EQ.-1 )
213*
214* NQ is the order of Q and NW is the minimum dimension of WORK
215*
216 IF( left ) THEN
217 nq = m
218 nw = max( 1, n )
219 ELSE
220 nq = n
221 nw = max( 1, m )
222 END IF
223 IF( .NOT.left .AND. .NOT.lsame( side, 'R' ) ) THEN
224 info = -1
225 ELSE IF( .NOT.notran .AND. .NOT.lsame( trans, 'T' ) ) THEN
226 info = -2
227 ELSE IF( m.LT.0 ) THEN
228 info = -3
229 ELSE IF( n.LT.0 ) THEN
230 info = -4
231 ELSE IF( k.LT.0 .OR. k.GT.nq ) THEN
232 info = -5
233 ELSE IF( lda.LT.max( 1, k ) ) THEN
234 info = -7
235 ELSE IF( ldc.LT.max( 1, m ) ) THEN
236 info = -10
237 ELSE IF( lwork.LT.nw .AND. .NOT.lquery ) THEN
238 info = -12
239 END IF
240*
241 IF( info.EQ.0 ) THEN
242*
243* Compute the workspace requirements
244*
245 IF( m.EQ.0 .OR. n.EQ.0 ) THEN
246 lwkopt = 1
247 ELSE
248 nb = min( nbmax, ilaenv( 1, 'SORMRQ', side // trans, m,
249 $ n,
250 $ k, -1 ) )
251 lwkopt = nw*nb + tsize
252 END IF
253 work( 1 ) = sroundup_lwork(lwkopt)
254 END IF
255*
256 IF( info.NE.0 ) THEN
257 CALL xerbla( 'SORMRQ', -info )
258 RETURN
259 ELSE IF( lquery ) THEN
260 RETURN
261 END IF
262*
263* Quick return if possible
264*
265 IF( m.EQ.0 .OR. n.EQ.0 ) THEN
266 RETURN
267 END IF
268*
269 nbmin = 2
270 ldwork = nw
271 IF( nb.GT.1 .AND. nb.LT.k ) THEN
272 IF( lwork.LT.lwkopt ) THEN
273 nb = (lwork-tsize) / ldwork
274 nbmin = max( 2, ilaenv( 2, 'SORMRQ', side // trans, m, n,
275 $ k,
276 $ -1 ) )
277 END IF
278 END IF
279*
280 IF( nb.LT.nbmin .OR. nb.GE.k ) THEN
281*
282* Use unblocked code
283*
284 CALL sormr2( side, trans, m, n, k, a, lda, tau, c, ldc,
285 $ work,
286 $ iinfo )
287 ELSE
288*
289* Use blocked code
290*
291 iwt = 1 + nw*nb
292 IF( ( left .AND. .NOT.notran ) .OR.
293 $ ( .NOT.left .AND. notran ) ) THEN
294 i1 = 1
295 i2 = k
296 i3 = nb
297 ELSE
298 i1 = ( ( k-1 ) / nb )*nb + 1
299 i2 = 1
300 i3 = -nb
301 END IF
302*
303 IF( left ) THEN
304 ni = n
305 ELSE
306 mi = m
307 END IF
308*
309 IF( notran ) THEN
310 transt = 'T'
311 ELSE
312 transt = 'N'
313 END IF
314*
315 DO 10 i = i1, i2, i3
316 ib = min( nb, k-i+1 )
317*
318* Form the triangular factor of the block reflector
319* H = H(i+ib-1) . . . H(i+1) H(i)
320*
321 CALL slarft( 'Backward', 'Rowwise', nq-k+i+ib-1, ib,
322 $ a( i, 1 ), lda, tau( i ), work( iwt ), ldt )
323 IF( left ) THEN
324*
325* H or H**T is applied to C(1:m-k+i+ib-1,1:n)
326*
327 mi = m - k + i + ib - 1
328 ELSE
329*
330* H or H**T is applied to C(1:m,1:n-k+i+ib-1)
331*
332 ni = n - k + i + ib - 1
333 END IF
334*
335* Apply H or H**T
336*
337 CALL slarfb( side, transt, 'Backward', 'Rowwise', mi, ni,
338 $ ib, a( i, 1 ), lda, work( iwt ), ldt, c, ldc,
339 $ work, ldwork )
340 10 CONTINUE
341 END IF
342 work( 1 ) = sroundup_lwork(lwkopt)
343 RETURN
344*
345* End of SORMRQ
346*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
integer function ilaenv(ispec, name, opts, n1, n2, n3, n4)
ILAENV
Definition ilaenv.f:160
subroutine slarfb(side, trans, direct, storev, m, n, k, v, ldv, t, ldt, c, ldc, work, ldwork)
SLARFB applies a block reflector or its transpose to a general rectangular matrix.
Definition slarfb.f:195
recursive subroutine slarft(direct, storev, n, k, v, ldv, tau, t, ldt)
SLARFT forms the triangular factor T of a block reflector H = I - vtvH
Definition slarft.f:162
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
real function sroundup_lwork(lwork)
SROUNDUP_LWORK
subroutine sormr2(side, trans, m, n, k, a, lda, tau, c, ldc, work, info)
SORMR2 multiplies a general matrix by the orthogonal matrix from a RQ factorization determined by sge...
Definition sormr2.f:157
Here is the call graph for this function:
Here is the caller graph for this function: