LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ dlatme()

subroutine dlatme ( integer  n,
character  dist,
integer, dimension( 4 )  iseed,
double precision, dimension( * )  d,
integer  mode,
double precision  cond,
double precision  dmax,
character, dimension( * )  ei,
character  rsign,
character  upper,
character  sim,
double precision, dimension( * )  ds,
integer  modes,
double precision  conds,
integer  kl,
integer  ku,
double precision  anorm,
double precision, dimension( lda, * )  a,
integer  lda,
double precision, dimension( * )  work,
integer  info 
)

DLATME

Purpose:
    DLATME generates random non-symmetric square matrices with
    specified eigenvalues for testing LAPACK programs.

    DLATME operates by applying the following sequence of
    operations:

    1. Set the diagonal to D, where D may be input or
         computed according to MODE, COND, DMAX, and RSIGN
         as described below.

    2. If complex conjugate pairs are desired (MODE=0 and EI(1)='R',
         or MODE=5), certain pairs of adjacent elements of D are
         interpreted as the real and complex parts of a complex
         conjugate pair; A thus becomes block diagonal, with 1x1
         and 2x2 blocks.

    3. If UPPER='T', the upper triangle of A is set to random values
         out of distribution DIST.

    4. If SIM='T', A is multiplied on the left by a random matrix
         X, whose singular values are specified by DS, MODES, and
         CONDS, and on the right by X inverse.

    5. If KL < N-1, the lower bandwidth is reduced to KL using
         Householder transformations.  If KU < N-1, the upper
         bandwidth is reduced to KU.

    6. If ANORM is not negative, the matrix is scaled to have
         maximum-element-norm ANORM.

    (Note: since the matrix cannot be reduced beyond Hessenberg form,
     no packing options are available.)
Parameters
[in]N
          N is INTEGER
           The number of columns (or rows) of A. Not modified.
[in]DIST
          DIST is CHARACTER*1
           On entry, DIST specifies the type of distribution to be used
           to generate the random eigen-/singular values, and for the
           upper triangle (see UPPER).
           'U' => UNIFORM( 0, 1 )  ( 'U' for uniform )
           'S' => UNIFORM( -1, 1 ) ( 'S' for symmetric )
           'N' => NORMAL( 0, 1 )   ( 'N' for normal )
           Not modified.
[in,out]ISEED
          ISEED is INTEGER array, dimension ( 4 )
           On entry ISEED specifies the seed of the random number
           generator. They should lie between 0 and 4095 inclusive,
           and ISEED(4) should be odd. The random number generator
           uses a linear congruential sequence limited to small
           integers, and so should produce machine independent
           random numbers. The values of ISEED are changed on
           exit, and can be used in the next call to DLATME
           to continue the same random number sequence.
           Changed on exit.
[in,out]D
          D is DOUBLE PRECISION array, dimension ( N )
           This array is used to specify the eigenvalues of A.  If
           MODE=0, then D is assumed to contain the eigenvalues (but
           see the description of EI), otherwise they will be
           computed according to MODE, COND, DMAX, and RSIGN and
           placed in D.
           Modified if MODE is nonzero.
[in]MODE
          MODE is INTEGER
           On entry this describes how the eigenvalues are to
           be specified:
           MODE = 0 means use D (with EI) as input
           MODE = 1 sets D(1)=1 and D(2:N)=1.0/COND
           MODE = 2 sets D(1:N-1)=1 and D(N)=1.0/COND
           MODE = 3 sets D(I)=COND**(-(I-1)/(N-1))
           MODE = 4 sets D(i)=1 - (i-1)/(N-1)*(1 - 1/COND)
           MODE = 5 sets D to random numbers in the range
                    ( 1/COND , 1 ) such that their logarithms
                    are uniformly distributed.  Each odd-even pair
                    of elements will be either used as two real
                    eigenvalues or as the real and imaginary part
                    of a complex conjugate pair of eigenvalues;
                    the choice of which is done is random, with
                    50-50 probability, for each pair.
           MODE = 6 set D to random numbers from same distribution
                    as the rest of the matrix.
           MODE < 0 has the same meaning as ABS(MODE), except that
              the order of the elements of D is reversed.
           Thus if MODE is between 1 and 4, D has entries ranging
              from 1 to 1/COND, if between -1 and -4, D has entries
              ranging from 1/COND to 1,
           Not modified.
[in]COND
          COND is DOUBLE PRECISION
           On entry, this is used as described under MODE above.
           If used, it must be >= 1. Not modified.
[in]DMAX
          DMAX is DOUBLE PRECISION
           If MODE is neither -6, 0 nor 6, the contents of D, as
           computed according to MODE and COND, will be scaled by
           DMAX / max(abs(D(i))).  Note that DMAX need not be
           positive: if DMAX is negative (or zero), D will be
           scaled by a negative number (or zero).
           Not modified.
[in]EI
          EI is CHARACTER*1 array, dimension ( N )
           If MODE is 0, and EI(1) is not ' ' (space character),
           this array specifies which elements of D (on input) are
           real eigenvalues and which are the real and imaginary parts
           of a complex conjugate pair of eigenvalues.  The elements
           of EI may then only have the values 'R' and 'I'.  If
           EI(j)='R' and EI(j+1)='I', then the j-th eigenvalue is
           CMPLX( D(j) , D(j+1) ), and the (j+1)-th is the complex
           conjugate thereof.  If EI(j)=EI(j+1)='R', then the j-th
           eigenvalue is D(j) (i.e., real).  EI(1) may not be 'I',
           nor may two adjacent elements of EI both have the value 'I'.
           If MODE is not 0, then EI is ignored.  If MODE is 0 and
           EI(1)=' ', then the eigenvalues will all be real.
           Not modified.
[in]RSIGN
          RSIGN is CHARACTER*1
           If MODE is not 0, 6, or -6, and RSIGN='T', then the
           elements of D, as computed according to MODE and COND, will
           be multiplied by a random sign (+1 or -1).  If RSIGN='F',
           they will not be.  RSIGN may only have the values 'T' or
           'F'.
           Not modified.
[in]UPPER
          UPPER is CHARACTER*1
           If UPPER='T', then the elements of A above the diagonal
           (and above the 2x2 diagonal blocks, if A has complex
           eigenvalues) will be set to random numbers out of DIST.
           If UPPER='F', they will not.  UPPER may only have the
           values 'T' or 'F'.
           Not modified.
[in]SIM
          SIM is CHARACTER*1
           If SIM='T', then A will be operated on by a "similarity
           transform", i.e., multiplied on the left by a matrix X and
           on the right by X inverse.  X = U S V, where U and V are
           random unitary matrices and S is a (diagonal) matrix of
           singular values specified by DS, MODES, and CONDS.  If
           SIM='F', then A will not be transformed.
           Not modified.
[in,out]DS
          DS is DOUBLE PRECISION array, dimension ( N )
           This array is used to specify the singular values of X,
           in the same way that D specifies the eigenvalues of A.
           If MODE=0, the DS contains the singular values, which
           may not be zero.
           Modified if MODE is nonzero.
[in]MODES
          MODES is INTEGER
[in]CONDS
          CONDS is DOUBLE PRECISION
           Same as MODE and COND, but for specifying the diagonal
           of S.  MODES=-6 and +6 are not allowed (since they would
           result in randomly ill-conditioned eigenvalues.)
[in]KL
          KL is INTEGER
           This specifies the lower bandwidth of the  matrix.  KL=1
           specifies upper Hessenberg form.  If KL is at least N-1,
           then A will have full lower bandwidth.  KL must be at
           least 1.
           Not modified.
[in]KU
          KU is INTEGER
           This specifies the upper bandwidth of the  matrix.  KU=1
           specifies lower Hessenberg form.  If KU is at least N-1,
           then A will have full upper bandwidth; if KU and KL
           are both at least N-1, then A will be dense.  Only one of
           KU and KL may be less than N-1.  KU must be at least 1.
           Not modified.
[in]ANORM
          ANORM is DOUBLE PRECISION
           If ANORM is not negative, then A will be scaled by a non-
           negative real number to make the maximum-element-norm of A
           to be ANORM.
           Not modified.
[out]A
          A is DOUBLE PRECISION array, dimension ( LDA, N )
           On exit A is the desired test matrix.
           Modified.
[in]LDA
          LDA is INTEGER
           LDA specifies the first dimension of A as declared in the
           calling program.  LDA must be at least N.
           Not modified.
[out]WORK
          WORK is DOUBLE PRECISION array, dimension ( 3*N )
           Workspace.
           Modified.
[out]INFO
          INFO is INTEGER
           Error code.  On exit, INFO will be set to one of the
           following values:
             0 => normal return
            -1 => N negative
            -2 => DIST illegal string
            -5 => MODE not in range -6 to 6
            -6 => COND less than 1.0, and MODE neither -6, 0 nor 6
            -8 => EI(1) is not ' ' or 'R', EI(j) is not 'R' or 'I', or
                  two adjacent elements of EI are 'I'.
            -9 => RSIGN is not 'T' or 'F'
           -10 => UPPER is not 'T' or 'F'
           -11 => SIM   is not 'T' or 'F'
           -12 => MODES=0 and DS has a zero singular value.
           -13 => MODES is not in the range -5 to 5.
           -14 => MODES is nonzero and CONDS is less than 1.
           -15 => KL is less than 1.
           -16 => KU is less than 1, or KL and KU are both less than
                  N-1.
           -19 => LDA is less than N.
            1  => Error return from DLATM1 (computing D)
            2  => Cannot scale to DMAX (max. eigenvalue is 0)
            3  => Error return from DLATM1 (computing DS)
            4  => Error return from DLARGE
            5  => Zero singular value from DLATM1.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 327 of file dlatme.f.

332*
333* -- LAPACK computational routine --
334* -- LAPACK is a software package provided by Univ. of Tennessee, --
335* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
336*
337* .. Scalar Arguments ..
338 CHARACTER DIST, RSIGN, SIM, UPPER
339 INTEGER INFO, KL, KU, LDA, MODE, MODES, N
340 DOUBLE PRECISION ANORM, COND, CONDS, DMAX
341* ..
342* .. Array Arguments ..
343 CHARACTER EI( * )
344 INTEGER ISEED( 4 )
345 DOUBLE PRECISION A( LDA, * ), D( * ), DS( * ), WORK( * )
346* ..
347*
348* =====================================================================
349*
350* .. Parameters ..
351 DOUBLE PRECISION ZERO
352 parameter( zero = 0.0d0 )
353 DOUBLE PRECISION ONE
354 parameter( one = 1.0d0 )
355 DOUBLE PRECISION HALF
356 parameter( half = 1.0d0 / 2.0d0 )
357* ..
358* .. Local Scalars ..
359 LOGICAL BADEI, BADS, USEEI
360 INTEGER I, IC, ICOLS, IDIST, IINFO, IR, IROWS, IRSIGN,
361 $ ISIM, IUPPER, J, JC, JCR, JR
362 DOUBLE PRECISION ALPHA, TAU, TEMP, XNORMS
363* ..
364* .. Local Arrays ..
365 DOUBLE PRECISION TEMPA( 1 )
366* ..
367* .. External Functions ..
368 LOGICAL LSAME
369 DOUBLE PRECISION DLANGE, DLARAN
370 EXTERNAL lsame, dlange, dlaran
371* ..
372* .. External Subroutines ..
373 EXTERNAL dcopy, dgemv, dger, dlarfg, dlarge, dlarnv,
375* ..
376* .. Intrinsic Functions ..
377 INTRINSIC abs, max, mod
378* ..
379* .. Executable Statements ..
380*
381* 1) Decode and Test the input parameters.
382* Initialize flags & seed.
383*
384 info = 0
385*
386* Quick return if possible
387*
388 IF( n.EQ.0 )
389 $ RETURN
390*
391* Decode DIST
392*
393 IF( lsame( dist, 'U' ) ) THEN
394 idist = 1
395 ELSE IF( lsame( dist, 'S' ) ) THEN
396 idist = 2
397 ELSE IF( lsame( dist, 'N' ) ) THEN
398 idist = 3
399 ELSE
400 idist = -1
401 END IF
402*
403* Check EI
404*
405 useei = .true.
406 badei = .false.
407 IF( lsame( ei( 1 ), ' ' ) .OR. mode.NE.0 ) THEN
408 useei = .false.
409 ELSE
410 IF( lsame( ei( 1 ), 'R' ) ) THEN
411 DO 10 j = 2, n
412 IF( lsame( ei( j ), 'I' ) ) THEN
413 IF( lsame( ei( j-1 ), 'I' ) )
414 $ badei = .true.
415 ELSE
416 IF( .NOT.lsame( ei( j ), 'R' ) )
417 $ badei = .true.
418 END IF
419 10 CONTINUE
420 ELSE
421 badei = .true.
422 END IF
423 END IF
424*
425* Decode RSIGN
426*
427 IF( lsame( rsign, 'T' ) ) THEN
428 irsign = 1
429 ELSE IF( lsame( rsign, 'F' ) ) THEN
430 irsign = 0
431 ELSE
432 irsign = -1
433 END IF
434*
435* Decode UPPER
436*
437 IF( lsame( upper, 'T' ) ) THEN
438 iupper = 1
439 ELSE IF( lsame( upper, 'F' ) ) THEN
440 iupper = 0
441 ELSE
442 iupper = -1
443 END IF
444*
445* Decode SIM
446*
447 IF( lsame( sim, 'T' ) ) THEN
448 isim = 1
449 ELSE IF( lsame( sim, 'F' ) ) THEN
450 isim = 0
451 ELSE
452 isim = -1
453 END IF
454*
455* Check DS, if MODES=0 and ISIM=1
456*
457 bads = .false.
458 IF( modes.EQ.0 .AND. isim.EQ.1 ) THEN
459 DO 20 j = 1, n
460 IF( ds( j ).EQ.zero )
461 $ bads = .true.
462 20 CONTINUE
463 END IF
464*
465* Set INFO if an error
466*
467 IF( n.LT.0 ) THEN
468 info = -1
469 ELSE IF( idist.EQ.-1 ) THEN
470 info = -2
471 ELSE IF( abs( mode ).GT.6 ) THEN
472 info = -5
473 ELSE IF( ( mode.NE.0 .AND. abs( mode ).NE.6 ) .AND. cond.LT.one )
474 $ THEN
475 info = -6
476 ELSE IF( badei ) THEN
477 info = -8
478 ELSE IF( irsign.EQ.-1 ) THEN
479 info = -9
480 ELSE IF( iupper.EQ.-1 ) THEN
481 info = -10
482 ELSE IF( isim.EQ.-1 ) THEN
483 info = -11
484 ELSE IF( bads ) THEN
485 info = -12
486 ELSE IF( isim.EQ.1 .AND. abs( modes ).GT.5 ) THEN
487 info = -13
488 ELSE IF( isim.EQ.1 .AND. modes.NE.0 .AND. conds.LT.one ) THEN
489 info = -14
490 ELSE IF( kl.LT.1 ) THEN
491 info = -15
492 ELSE IF( ku.LT.1 .OR. ( ku.LT.n-1 .AND. kl.LT.n-1 ) ) THEN
493 info = -16
494 ELSE IF( lda.LT.max( 1, n ) ) THEN
495 info = -19
496 END IF
497*
498 IF( info.NE.0 ) THEN
499 CALL xerbla( 'DLATME', -info )
500 RETURN
501 END IF
502*
503* Initialize random number generator
504*
505 DO 30 i = 1, 4
506 iseed( i ) = mod( abs( iseed( i ) ), 4096 )
507 30 CONTINUE
508*
509 IF( mod( iseed( 4 ), 2 ).NE.1 )
510 $ iseed( 4 ) = iseed( 4 ) + 1
511*
512* 2) Set up diagonal of A
513*
514* Compute D according to COND and MODE
515*
516 CALL dlatm1( mode, cond, irsign, idist, iseed, d, n, iinfo )
517 IF( iinfo.NE.0 ) THEN
518 info = 1
519 RETURN
520 END IF
521 IF( mode.NE.0 .AND. abs( mode ).NE.6 ) THEN
522*
523* Scale by DMAX
524*
525 temp = abs( d( 1 ) )
526 DO 40 i = 2, n
527 temp = max( temp, abs( d( i ) ) )
528 40 CONTINUE
529*
530 IF( temp.GT.zero ) THEN
531 alpha = dmax / temp
532 ELSE IF( dmax.NE.zero ) THEN
533 info = 2
534 RETURN
535 ELSE
536 alpha = zero
537 END IF
538*
539 CALL dscal( n, alpha, d, 1 )
540*
541 END IF
542*
543 CALL dlaset( 'Full', n, n, zero, zero, a, lda )
544 CALL dcopy( n, d, 1, a, lda+1 )
545*
546* Set up complex conjugate pairs
547*
548 IF( mode.EQ.0 ) THEN
549 IF( useei ) THEN
550 DO 50 j = 2, n
551 IF( lsame( ei( j ), 'I' ) ) THEN
552 a( j-1, j ) = a( j, j )
553 a( j, j-1 ) = -a( j, j )
554 a( j, j ) = a( j-1, j-1 )
555 END IF
556 50 CONTINUE
557 END IF
558*
559 ELSE IF( abs( mode ).EQ.5 ) THEN
560*
561 DO 60 j = 2, n, 2
562 IF( dlaran( iseed ).GT.half ) THEN
563 a( j-1, j ) = a( j, j )
564 a( j, j-1 ) = -a( j, j )
565 a( j, j ) = a( j-1, j-1 )
566 END IF
567 60 CONTINUE
568 END IF
569*
570* 3) If UPPER='T', set upper triangle of A to random numbers.
571* (but don't modify the corners of 2x2 blocks.)
572*
573 IF( iupper.NE.0 ) THEN
574 DO 70 jc = 2, n
575 IF( a( jc-1, jc ).NE.zero ) THEN
576 jr = jc - 2
577 ELSE
578 jr = jc - 1
579 END IF
580 CALL dlarnv( idist, iseed, jr, a( 1, jc ) )
581 70 CONTINUE
582 END IF
583*
584* 4) If SIM='T', apply similarity transformation.
585*
586* -1
587* Transform is X A X , where X = U S V, thus
588*
589* it is U S V A V' (1/S) U'
590*
591 IF( isim.NE.0 ) THEN
592*
593* Compute S (singular values of the eigenvector matrix)
594* according to CONDS and MODES
595*
596 CALL dlatm1( modes, conds, 0, 0, iseed, ds, n, iinfo )
597 IF( iinfo.NE.0 ) THEN
598 info = 3
599 RETURN
600 END IF
601*
602* Multiply by V and V'
603*
604 CALL dlarge( n, a, lda, iseed, work, iinfo )
605 IF( iinfo.NE.0 ) THEN
606 info = 4
607 RETURN
608 END IF
609*
610* Multiply by S and (1/S)
611*
612 DO 80 j = 1, n
613 CALL dscal( n, ds( j ), a( j, 1 ), lda )
614 IF( ds( j ).NE.zero ) THEN
615 CALL dscal( n, one / ds( j ), a( 1, j ), 1 )
616 ELSE
617 info = 5
618 RETURN
619 END IF
620 80 CONTINUE
621*
622* Multiply by U and U'
623*
624 CALL dlarge( n, a, lda, iseed, work, iinfo )
625 IF( iinfo.NE.0 ) THEN
626 info = 4
627 RETURN
628 END IF
629 END IF
630*
631* 5) Reduce the bandwidth.
632*
633 IF( kl.LT.n-1 ) THEN
634*
635* Reduce bandwidth -- kill column
636*
637 DO 90 jcr = kl + 1, n - 1
638 ic = jcr - kl
639 irows = n + 1 - jcr
640 icols = n + kl - jcr
641*
642 CALL dcopy( irows, a( jcr, ic ), 1, work, 1 )
643 xnorms = work( 1 )
644 CALL dlarfg( irows, xnorms, work( 2 ), 1, tau )
645 work( 1 ) = one
646*
647 CALL dgemv( 'T', irows, icols, one, a( jcr, ic+1 ), lda,
648 $ work, 1, zero, work( irows+1 ), 1 )
649 CALL dger( irows, icols, -tau, work, 1, work( irows+1 ), 1,
650 $ a( jcr, ic+1 ), lda )
651*
652 CALL dgemv( 'N', n, irows, one, a( 1, jcr ), lda, work, 1,
653 $ zero, work( irows+1 ), 1 )
654 CALL dger( n, irows, -tau, work( irows+1 ), 1, work, 1,
655 $ a( 1, jcr ), lda )
656*
657 a( jcr, ic ) = xnorms
658 CALL dlaset( 'Full', irows-1, 1, zero, zero, a( jcr+1, ic ),
659 $ lda )
660 90 CONTINUE
661 ELSE IF( ku.LT.n-1 ) THEN
662*
663* Reduce upper bandwidth -- kill a row at a time.
664*
665 DO 100 jcr = ku + 1, n - 1
666 ir = jcr - ku
667 irows = n + ku - jcr
668 icols = n + 1 - jcr
669*
670 CALL dcopy( icols, a( ir, jcr ), lda, work, 1 )
671 xnorms = work( 1 )
672 CALL dlarfg( icols, xnorms, work( 2 ), 1, tau )
673 work( 1 ) = one
674*
675 CALL dgemv( 'N', irows, icols, one, a( ir+1, jcr ), lda,
676 $ work, 1, zero, work( icols+1 ), 1 )
677 CALL dger( irows, icols, -tau, work( icols+1 ), 1, work, 1,
678 $ a( ir+1, jcr ), lda )
679*
680 CALL dgemv( 'C', icols, n, one, a( jcr, 1 ), lda, work, 1,
681 $ zero, work( icols+1 ), 1 )
682 CALL dger( icols, n, -tau, work, 1, work( icols+1 ), 1,
683 $ a( jcr, 1 ), lda )
684*
685 a( ir, jcr ) = xnorms
686 CALL dlaset( 'Full', 1, icols-1, zero, zero, a( ir, jcr+1 ),
687 $ lda )
688 100 CONTINUE
689 END IF
690*
691* Scale the matrix to have norm ANORM
692*
693 IF( anorm.GE.zero ) THEN
694 temp = dlange( 'M', n, n, a, lda, tempa )
695 IF( temp.GT.zero ) THEN
696 alpha = anorm / temp
697 DO 110 j = 1, n
698 CALL dscal( n, alpha, a( 1, j ), 1 )
699 110 CONTINUE
700 END IF
701 END IF
702*
703 RETURN
704*
705* End of DLATME
706*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
double precision function dlaran(iseed)
DLARAN
Definition dlaran.f:67
subroutine dlarge(n, a, lda, iseed, work, info)
DLARGE
Definition dlarge.f:87
subroutine dlatm1(mode, cond, irsign, idist, iseed, d, n, info)
DLATM1
Definition dlatm1.f:135
subroutine dcopy(n, dx, incx, dy, incy)
DCOPY
Definition dcopy.f:82
subroutine dgemv(trans, m, n, alpha, a, lda, x, incx, beta, y, incy)
DGEMV
Definition dgemv.f:158
subroutine dger(m, n, alpha, x, incx, y, incy, a, lda)
DGER
Definition dger.f:130
double precision function dlange(norm, m, n, a, lda, work)
DLANGE returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition dlange.f:114
subroutine dlarfg(n, alpha, x, incx, tau)
DLARFG generates an elementary reflector (Householder matrix).
Definition dlarfg.f:106
subroutine dlarnv(idist, iseed, n, x)
DLARNV returns a vector of random numbers from a uniform or normal distribution.
Definition dlarnv.f:97
subroutine dlaset(uplo, m, n, alpha, beta, a, lda)
DLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition dlaset.f:110
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
subroutine dscal(n, da, dx, incx)
DSCAL
Definition dscal.f:79
Here is the call graph for this function:
Here is the caller graph for this function: