LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ ddrvsy()

subroutine ddrvsy ( logical, dimension( * ) dotype,
integer nn,
integer, dimension( * ) nval,
integer nrhs,
double precision thresh,
logical tsterr,
integer nmax,
double precision, dimension( * ) a,
double precision, dimension( * ) afac,
double precision, dimension( * ) ainv,
double precision, dimension( * ) b,
double precision, dimension( * ) x,
double precision, dimension( * ) xact,
double precision, dimension( * ) work,
double precision, dimension( * ) rwork,
integer, dimension( * ) iwork,
integer nout )

DDRVSY

Purpose:
!>
!> DDRVSY tests the driver routines DSYSV and -SVX.
!> 
Parameters
[in]DOTYPE
!>          DOTYPE is LOGICAL array, dimension (NTYPES)
!>          The matrix types to be used for testing.  Matrices of type j
!>          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
!>          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
!> 
[in]NN
!>          NN is INTEGER
!>          The number of values of N contained in the vector NVAL.
!> 
[in]NVAL
!>          NVAL is INTEGER array, dimension (NN)
!>          The values of the matrix dimension N.
!> 
[in]NRHS
!>          NRHS is INTEGER
!>          The number of right hand side vectors to be generated for
!>          each linear system.
!> 
[in]THRESH
!>          THRESH is DOUBLE PRECISION
!>          The threshold value for the test ratios.  A result is
!>          included in the output file if RESULT >= THRESH.  To have
!>          every test ratio printed, use THRESH = 0.
!> 
[in]TSTERR
!>          TSTERR is LOGICAL
!>          Flag that indicates whether error exits are to be tested.
!> 
[in]NMAX
!>          NMAX is INTEGER
!>          The maximum value permitted for N, used in dimensioning the
!>          work arrays.
!> 
[out]A
!>          A is DOUBLE PRECISION array, dimension (NMAX*NMAX)
!> 
[out]AFAC
!>          AFAC is DOUBLE PRECISION array, dimension (NMAX*NMAX)
!> 
[out]AINV
!>          AINV is DOUBLE PRECISION array, dimension (NMAX*NMAX)
!> 
[out]B
!>          B is DOUBLE PRECISION array, dimension (NMAX*NRHS)
!> 
[out]X
!>          X is DOUBLE PRECISION array, dimension (NMAX*NRHS)
!> 
[out]XACT
!>          XACT is DOUBLE PRECISION array, dimension (NMAX*NRHS)
!> 
[out]WORK
!>          WORK is DOUBLE PRECISION array, dimension (NMAX*max(2,NRHS))
!> 
[out]RWORK
!>          RWORK is DOUBLE PRECISION array, dimension (NMAX+2*NRHS)
!> 
[out]IWORK
!>          IWORK is INTEGER array, dimension (2*NMAX)
!> 
[in]NOUT
!>          NOUT is INTEGER
!>          The unit number for output.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 149 of file ddrvsy.f.

152*
153* -- LAPACK test routine --
154* -- LAPACK is a software package provided by Univ. of Tennessee, --
155* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
156*
157* .. Scalar Arguments ..
158 LOGICAL TSTERR
159 INTEGER NMAX, NN, NOUT, NRHS
160 DOUBLE PRECISION THRESH
161* ..
162* .. Array Arguments ..
163 LOGICAL DOTYPE( * )
164 INTEGER IWORK( * ), NVAL( * )
165 DOUBLE PRECISION A( * ), AFAC( * ), AINV( * ), B( * ),
166 $ RWORK( * ), WORK( * ), X( * ), XACT( * )
167* ..
168*
169* =====================================================================
170*
171* .. Parameters ..
172 DOUBLE PRECISION ONE, ZERO
173 parameter( one = 1.0d+0, zero = 0.0d+0 )
174 INTEGER NTYPES, NTESTS
175 parameter( ntypes = 10, ntests = 6 )
176 INTEGER NFACT
177 parameter( nfact = 2 )
178* ..
179* .. Local Scalars ..
180 LOGICAL ZEROT
181 CHARACTER DIST, FACT, TYPE, UPLO, XTYPE
182 CHARACTER*3 PATH
183 INTEGER I, I1, I2, IFACT, IMAT, IN, INFO, IOFF, IUPLO,
184 $ IZERO, J, K, K1, KL, KU, LDA, LWORK, MODE, N,
185 $ NB, NBMIN, NERRS, NFAIL, NIMAT, NRUN, NT
186 DOUBLE PRECISION AINVNM, ANORM, CNDNUM, RCOND, RCONDC
187* ..
188* .. Local Arrays ..
189 CHARACTER FACTS( NFACT ), UPLOS( 2 )
190 INTEGER ISEED( 4 ), ISEEDY( 4 )
191 DOUBLE PRECISION RESULT( NTESTS )
192* ..
193* .. External Functions ..
194 DOUBLE PRECISION DGET06, DLANSY
195 EXTERNAL dget06, dlansy
196* ..
197* .. External Subroutines ..
198 EXTERNAL aladhd, alaerh, alasvm, derrvx, dget04, dlacpy,
201* ..
202* .. Scalars in Common ..
203 LOGICAL LERR, OK
204 CHARACTER*32 SRNAMT
205 INTEGER INFOT, NUNIT
206* ..
207* .. Common blocks ..
208 COMMON / infoc / infot, nunit, ok, lerr
209 COMMON / srnamc / srnamt
210* ..
211* .. Intrinsic Functions ..
212 INTRINSIC max, min
213* ..
214* .. Data statements ..
215 DATA iseedy / 1988, 1989, 1990, 1991 /
216 DATA uplos / 'U', 'L' / , facts / 'F', 'N' /
217* ..
218* .. Executable Statements ..
219*
220* Initialize constants and the random number seed.
221*
222 path( 1: 1 ) = 'Double precision'
223 path( 2: 3 ) = 'SY'
224 nrun = 0
225 nfail = 0
226 nerrs = 0
227 DO 10 i = 1, 4
228 iseed( i ) = iseedy( i )
229 10 CONTINUE
230 lwork = max( 2*nmax, nmax*nrhs )
231*
232* Test the error exits
233*
234 IF( tsterr )
235 $ CALL derrvx( path, nout )
236 infot = 0
237*
238* Set the block size and minimum block size for testing.
239*
240 nb = 1
241 nbmin = 2
242 CALL xlaenv( 1, nb )
243 CALL xlaenv( 2, nbmin )
244*
245* Do for each value of N in NVAL
246*
247 DO 180 in = 1, nn
248 n = nval( in )
249 lda = max( n, 1 )
250 xtype = 'N'
251 nimat = ntypes
252 IF( n.LE.0 )
253 $ nimat = 1
254*
255 DO 170 imat = 1, nimat
256*
257* Do the tests only if DOTYPE( IMAT ) is true.
258*
259 IF( .NOT.dotype( imat ) )
260 $ GO TO 170
261*
262* Skip types 3, 4, 5, or 6 if the matrix size is too small.
263*
264 zerot = imat.GE.3 .AND. imat.LE.6
265 IF( zerot .AND. n.LT.imat-2 )
266 $ GO TO 170
267*
268* Do first for UPLO = 'U', then for UPLO = 'L'
269*
270 DO 160 iuplo = 1, 2
271 uplo = uplos( iuplo )
272*
273* Set up parameters with DLATB4 and generate a test matrix
274* with DLATMS.
275*
276 CALL dlatb4( path, imat, n, n, TYPE, KL, KU, ANORM, MODE,
277 $ CNDNUM, DIST )
278*
279 srnamt = 'DLATMS'
280 CALL dlatms( n, n, dist, iseed, TYPE, RWORK, MODE,
281 $ CNDNUM, ANORM, KL, KU, UPLO, A, LDA, WORK,
282 $ INFO )
283*
284* Check error code from DLATMS.
285*
286 IF( info.NE.0 ) THEN
287 CALL alaerh( path, 'DLATMS', info, 0, uplo, n, n, -1,
288 $ -1, -1, imat, nfail, nerrs, nout )
289 GO TO 160
290 END IF
291*
292* For types 3-6, zero one or more rows and columns of the
293* matrix to test that INFO is returned correctly.
294*
295 IF( zerot ) THEN
296 IF( imat.EQ.3 ) THEN
297 izero = 1
298 ELSE IF( imat.EQ.4 ) THEN
299 izero = n
300 ELSE
301 izero = n / 2 + 1
302 END IF
303*
304 IF( imat.LT.6 ) THEN
305*
306* Set row and column IZERO to zero.
307*
308 IF( iuplo.EQ.1 ) THEN
309 ioff = ( izero-1 )*lda
310 DO 20 i = 1, izero - 1
311 a( ioff+i ) = zero
312 20 CONTINUE
313 ioff = ioff + izero
314 DO 30 i = izero, n
315 a( ioff ) = zero
316 ioff = ioff + lda
317 30 CONTINUE
318 ELSE
319 ioff = izero
320 DO 40 i = 1, izero - 1
321 a( ioff ) = zero
322 ioff = ioff + lda
323 40 CONTINUE
324 ioff = ioff - izero
325 DO 50 i = izero, n
326 a( ioff+i ) = zero
327 50 CONTINUE
328 END IF
329 ELSE
330 ioff = 0
331 IF( iuplo.EQ.1 ) THEN
332*
333* Set the first IZERO rows and columns to zero.
334*
335 DO 70 j = 1, n
336 i2 = min( j, izero )
337 DO 60 i = 1, i2
338 a( ioff+i ) = zero
339 60 CONTINUE
340 ioff = ioff + lda
341 70 CONTINUE
342 ELSE
343*
344* Set the last IZERO rows and columns to zero.
345*
346 DO 90 j = 1, n
347 i1 = max( j, izero )
348 DO 80 i = i1, n
349 a( ioff+i ) = zero
350 80 CONTINUE
351 ioff = ioff + lda
352 90 CONTINUE
353 END IF
354 END IF
355 ELSE
356 izero = 0
357 END IF
358*
359 DO 150 ifact = 1, nfact
360*
361* Do first for FACT = 'F', then for other values.
362*
363 fact = facts( ifact )
364*
365* Compute the condition number for comparison with
366* the value returned by DSYSVX.
367*
368 IF( zerot ) THEN
369 IF( ifact.EQ.1 )
370 $ GO TO 150
371 rcondc = zero
372*
373 ELSE IF( ifact.EQ.1 ) THEN
374*
375* Compute the 1-norm of A.
376*
377 anorm = dlansy( '1', uplo, n, a, lda, rwork )
378*
379* Factor the matrix A.
380*
381 CALL dlacpy( uplo, n, n, a, lda, afac, lda )
382 CALL dsytrf( uplo, n, afac, lda, iwork, work,
383 $ lwork, info )
384*
385* Compute inv(A) and take its norm.
386*
387 CALL dlacpy( uplo, n, n, afac, lda, ainv, lda )
388 lwork = (n+nb+1)*(nb+3)
389 CALL dsytri2( uplo, n, ainv, lda, iwork, work,
390 $ lwork, info )
391 ainvnm = dlansy( '1', uplo, n, ainv, lda, rwork )
392*
393* Compute the 1-norm condition number of A.
394*
395 IF( anorm.LE.zero .OR. ainvnm.LE.zero ) THEN
396 rcondc = one
397 ELSE
398 rcondc = ( one / anorm ) / ainvnm
399 END IF
400 END IF
401*
402* Form an exact solution and set the right hand side.
403*
404 srnamt = 'DLARHS'
405 CALL dlarhs( path, xtype, uplo, ' ', n, n, kl, ku,
406 $ nrhs, a, lda, xact, lda, b, lda, iseed,
407 $ info )
408 xtype = 'C'
409*
410* --- Test DSYSV ---
411*
412 IF( ifact.EQ.2 ) THEN
413 CALL dlacpy( uplo, n, n, a, lda, afac, lda )
414 CALL dlacpy( 'Full', n, nrhs, b, lda, x, lda )
415*
416* Factor the matrix and solve the system using DSYSV.
417*
418 srnamt = 'DSYSV '
419 CALL dsysv( uplo, n, nrhs, afac, lda, iwork, x,
420 $ lda, work, lwork, info )
421*
422* Adjust the expected value of INFO to account for
423* pivoting.
424*
425 k = izero
426 IF( k.GT.0 ) THEN
427 100 CONTINUE
428 IF( iwork( k ).LT.0 ) THEN
429 IF( iwork( k ).NE.-k ) THEN
430 k = -iwork( k )
431 GO TO 100
432 END IF
433 ELSE IF( iwork( k ).NE.k ) THEN
434 k = iwork( k )
435 GO TO 100
436 END IF
437 END IF
438*
439* Check error code from DSYSV .
440*
441 IF( info.NE.k ) THEN
442 CALL alaerh( path, 'DSYSV ', info, k, uplo, n,
443 $ n, -1, -1, nrhs, imat, nfail,
444 $ nerrs, nout )
445 GO TO 120
446 ELSE IF( info.NE.0 ) THEN
447 GO TO 120
448 END IF
449*
450* Reconstruct matrix from factors and compute
451* residual.
452*
453 CALL dsyt01( uplo, n, a, lda, afac, lda, iwork,
454 $ ainv, lda, rwork, result( 1 ) )
455*
456* Compute residual of the computed solution.
457*
458 CALL dlacpy( 'Full', n, nrhs, b, lda, work, lda )
459 CALL dpot02( uplo, n, nrhs, a, lda, x, lda, work,
460 $ lda, rwork, result( 2 ) )
461*
462* Check solution from generated exact solution.
463*
464 CALL dget04( n, nrhs, x, lda, xact, lda, rcondc,
465 $ result( 3 ) )
466 nt = 3
467*
468* Print information about the tests that did not pass
469* the threshold.
470*
471 DO 110 k = 1, nt
472 IF( result( k ).GE.thresh ) THEN
473 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
474 $ CALL aladhd( nout, path )
475 WRITE( nout, fmt = 9999 )'DSYSV ', uplo, n,
476 $ imat, k, result( k )
477 nfail = nfail + 1
478 END IF
479 110 CONTINUE
480 nrun = nrun + nt
481 120 CONTINUE
482 END IF
483*
484* --- Test DSYSVX ---
485*
486 IF( ifact.EQ.2 )
487 $ CALL dlaset( uplo, n, n, zero, zero, afac, lda )
488 CALL dlaset( 'Full', n, nrhs, zero, zero, x, lda )
489*
490* Solve the system and compute the condition number and
491* error bounds using DSYSVX.
492*
493 srnamt = 'DSYSVX'
494 CALL dsysvx( fact, uplo, n, nrhs, a, lda, afac, lda,
495 $ iwork, b, lda, x, lda, rcond, rwork,
496 $ rwork( nrhs+1 ), work, lwork,
497 $ iwork( n+1 ), info )
498*
499* Adjust the expected value of INFO to account for
500* pivoting.
501*
502 k = izero
503 IF( k.GT.0 ) THEN
504 130 CONTINUE
505 IF( iwork( k ).LT.0 ) THEN
506 IF( iwork( k ).NE.-k ) THEN
507 k = -iwork( k )
508 GO TO 130
509 END IF
510 ELSE IF( iwork( k ).NE.k ) THEN
511 k = iwork( k )
512 GO TO 130
513 END IF
514 END IF
515*
516* Check the error code from DSYSVX.
517*
518 IF( info.NE.k ) THEN
519 CALL alaerh( path, 'DSYSVX', info, k, fact // uplo,
520 $ n, n, -1, -1, nrhs, imat, nfail,
521 $ nerrs, nout )
522 GO TO 150
523 END IF
524*
525 IF( info.EQ.0 ) THEN
526 IF( ifact.GE.2 ) THEN
527*
528* Reconstruct matrix from factors and compute
529* residual.
530*
531 CALL dsyt01( uplo, n, a, lda, afac, lda, iwork,
532 $ ainv, lda, rwork( 2*nrhs+1 ),
533 $ result( 1 ) )
534 k1 = 1
535 ELSE
536 k1 = 2
537 END IF
538*
539* Compute residual of the computed solution.
540*
541 CALL dlacpy( 'Full', n, nrhs, b, lda, work, lda )
542 CALL dpot02( uplo, n, nrhs, a, lda, x, lda, work,
543 $ lda, rwork( 2*nrhs+1 ), result( 2 ) )
544*
545* Check solution from generated exact solution.
546*
547 CALL dget04( n, nrhs, x, lda, xact, lda, rcondc,
548 $ result( 3 ) )
549*
550* Check the error bounds from iterative refinement.
551*
552 CALL dpot05( uplo, n, nrhs, a, lda, b, lda, x, lda,
553 $ xact, lda, rwork, rwork( nrhs+1 ),
554 $ result( 4 ) )
555 ELSE
556 k1 = 6
557 END IF
558*
559* Compare RCOND from DSYSVX with the computed value
560* in RCONDC.
561*
562 result( 6 ) = dget06( rcond, rcondc )
563*
564* Print information about the tests that did not pass
565* the threshold.
566*
567 DO 140 k = k1, 6
568 IF( result( k ).GE.thresh ) THEN
569 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
570 $ CALL aladhd( nout, path )
571 WRITE( nout, fmt = 9998 )'DSYSVX', fact, uplo,
572 $ n, imat, k, result( k )
573 nfail = nfail + 1
574 END IF
575 140 CONTINUE
576 nrun = nrun + 7 - k1
577*
578 150 CONTINUE
579*
580 160 CONTINUE
581 170 CONTINUE
582 180 CONTINUE
583*
584* Print a summary of the results.
585*
586 CALL alasvm( path, nout, nfail, nrun, nerrs )
587*
588 9999 FORMAT( 1x, a, ', UPLO=''', a1, ''', N =', i5, ', type ', i2,
589 $ ', test ', i2, ', ratio =', g12.5 )
590 9998 FORMAT( 1x, a, ', FACT=''', a1, ''', UPLO=''', a1, ''', N =', i5,
591 $ ', type ', i2, ', test ', i2, ', ratio =', g12.5 )
592 RETURN
593*
594* End of DDRVSY
595*
subroutine alasvm(type, nout, nfail, nrun, nerrs)
ALASVM
Definition alasvm.f:73
subroutine dlarhs(path, xtype, uplo, trans, m, n, kl, ku, nrhs, a, lda, x, ldx, b, ldb, iseed, info)
DLARHS
Definition dlarhs.f:205
subroutine xlaenv(ispec, nvalue)
XLAENV
Definition xlaenv.f:81
subroutine aladhd(iounit, path)
ALADHD
Definition aladhd.f:90
subroutine alaerh(path, subnam, info, infoe, opts, m, n, kl, ku, n5, imat, nfail, nerrs, nout)
ALAERH
Definition alaerh.f:147
subroutine derrvx(path, nunit)
DERRVX
Definition derrvx.f:55
subroutine dget04(n, nrhs, x, ldx, xact, ldxact, rcond, resid)
DGET04
Definition dget04.f:102
double precision function dget06(rcond, rcondc)
DGET06
Definition dget06.f:55
subroutine dlatb4(path, imat, m, n, type, kl, ku, anorm, mode, cndnum, dist)
DLATB4
Definition dlatb4.f:120
subroutine dlatms(m, n, dist, iseed, sym, d, mode, cond, dmax, kl, ku, pack, a, lda, work, info)
DLATMS
Definition dlatms.f:321
subroutine dpot02(uplo, n, nrhs, a, lda, x, ldx, b, ldb, rwork, resid)
DPOT02
Definition dpot02.f:127
subroutine dpot05(uplo, n, nrhs, a, lda, b, ldb, x, ldx, xact, ldxact, ferr, berr, reslts)
DPOT05
Definition dpot05.f:164
subroutine dsyt01(uplo, n, a, lda, afac, ldafac, ipiv, c, ldc, rwork, resid)
DSYT01
Definition dsyt01.f:124
subroutine dsysv(uplo, n, nrhs, a, lda, ipiv, b, ldb, work, lwork, info)
DSYSV computes the solution to system of linear equations A * X = B for SY matrices
Definition dsysv.f:169
subroutine dsysvx(fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, rcond, ferr, berr, work, lwork, iwork, info)
DSYSVX computes the solution to system of linear equations A * X = B for SY matrices
Definition dsysvx.f:283
subroutine dsytrf(uplo, n, a, lda, ipiv, work, lwork, info)
DSYTRF
Definition dsytrf.f:180
subroutine dsytri2(uplo, n, a, lda, ipiv, work, lwork, info)
DSYTRI2
Definition dsytri2.f:125
subroutine dlacpy(uplo, m, n, a, lda, b, ldb)
DLACPY copies all or part of one two-dimensional array to another.
Definition dlacpy.f:101
double precision function dlansy(norm, uplo, n, a, lda, work)
DLANSY returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition dlansy.f:120
subroutine dlaset(uplo, m, n, alpha, beta, a, lda)
DLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition dlaset.f:108
Here is the call graph for this function:
Here is the caller graph for this function: