LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ dsysv()

subroutine dsysv ( character uplo,
integer n,
integer nrhs,
double precision, dimension( lda, * ) a,
integer lda,
integer, dimension( * ) ipiv,
double precision, dimension( ldb, * ) b,
integer ldb,
double precision, dimension( * ) work,
integer lwork,
integer info )

DSYSV computes the solution to system of linear equations A * X = B for SY matrices

Download DSYSV + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> DSYSV computes the solution to a real system of linear equations
!>    A * X = B,
!> where A is an N-by-N symmetric matrix and X and B are N-by-NRHS
!> matrices.
!>
!> The diagonal pivoting method is used to factor A as
!>    A = U * D * U**T,  if UPLO = 'U', or
!>    A = L * D * L**T,  if UPLO = 'L',
!> where U (or L) is a product of permutation and unit upper (lower)
!> triangular matrices, and D is symmetric and block diagonal with
!> 1-by-1 and 2-by-2 diagonal blocks.  The factored form of A is then
!> used to solve the system of equations A * X = B.
!> 
Parameters
[in]UPLO
!>          UPLO is CHARACTER*1
!>          = 'U':  Upper triangle of A is stored;
!>          = 'L':  Lower triangle of A is stored.
!> 
[in]N
!>          N is INTEGER
!>          The number of linear equations, i.e., the order of the
!>          matrix A.  N >= 0.
!> 
[in]NRHS
!>          NRHS is INTEGER
!>          The number of right hand sides, i.e., the number of columns
!>          of the matrix B.  NRHS >= 0.
!> 
[in,out]A
!>          A is DOUBLE PRECISION array, dimension (LDA,N)
!>          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
!>          N-by-N upper triangular part of A contains the upper
!>          triangular part of the matrix A, and the strictly lower
!>          triangular part of A is not referenced.  If UPLO = 'L', the
!>          leading N-by-N lower triangular part of A contains the lower
!>          triangular part of the matrix A, and the strictly upper
!>          triangular part of A is not referenced.
!>
!>          On exit, if INFO = 0, the block diagonal matrix D and the
!>          multipliers used to obtain the factor U or L from the
!>          factorization A = U*D*U**T or A = L*D*L**T as computed by
!>          DSYTRF.
!> 
[in]LDA
!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,N).
!> 
[out]IPIV
!>          IPIV is INTEGER array, dimension (N)
!>          Details of the interchanges and the block structure of D, as
!>          determined by DSYTRF.  If IPIV(k) > 0, then rows and columns
!>          k and IPIV(k) were interchanged, and D(k,k) is a 1-by-1
!>          diagonal block.  If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0,
!>          then rows and columns k-1 and -IPIV(k) were interchanged and
!>          D(k-1:k,k-1:k) is a 2-by-2 diagonal block.  If UPLO = 'L' and
!>          IPIV(k) = IPIV(k+1) < 0, then rows and columns k+1 and
!>          -IPIV(k) were interchanged and D(k:k+1,k:k+1) is a 2-by-2
!>          diagonal block.
!> 
[in,out]B
!>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
!>          On entry, the N-by-NRHS right hand side matrix B.
!>          On exit, if INFO = 0, the N-by-NRHS solution matrix X.
!> 
[in]LDB
!>          LDB is INTEGER
!>          The leading dimension of the array B.  LDB >= max(1,N).
!> 
[out]WORK
!>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
!>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
!> 
[in]LWORK
!>          LWORK is INTEGER
!>          The length of WORK.  LWORK >= 1, and for best performance
!>          LWORK >= max(1,N*NB), where NB is the optimal blocksize for
!>          DSYTRF.
!>          for LWORK < N, TRS will be done with Level BLAS 2
!>          for LWORK >= N, TRS will be done with Level BLAS 3
!>
!>          If LWORK = -1, then a workspace query is assumed; the routine
!>          only calculates the optimal size of the WORK array, returns
!>          this value as the first entry of the WORK array, and no error
!>          message related to LWORK is issued by XERBLA.
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0: successful exit
!>          < 0: if INFO = -i, the i-th argument had an illegal value
!>          > 0: if INFO = i, D(i,i) is exactly zero.  The factorization
!>               has been completed, but the block diagonal matrix D is
!>               exactly singular, so the solution could not be computed.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 167 of file dsysv.f.

169*
170* -- LAPACK driver routine --
171* -- LAPACK is a software package provided by Univ. of Tennessee, --
172* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
173*
174* .. Scalar Arguments ..
175 CHARACTER UPLO
176 INTEGER INFO, LDA, LDB, LWORK, N, NRHS
177* ..
178* .. Array Arguments ..
179 INTEGER IPIV( * )
180 DOUBLE PRECISION A( LDA, * ), B( LDB, * ), WORK( * )
181* ..
182*
183* =====================================================================
184*
185* .. Local Scalars ..
186 LOGICAL LQUERY
187 INTEGER LWKOPT
188* ..
189* .. External Functions ..
190 LOGICAL LSAME
191 EXTERNAL lsame
192* ..
193* .. External Subroutines ..
194 EXTERNAL xerbla, dsytrf, dsytrs, dsytrs2
195* ..
196* .. Intrinsic Functions ..
197 INTRINSIC max
198* ..
199* .. Executable Statements ..
200*
201* Test the input parameters.
202*
203 info = 0
204 lquery = ( lwork.EQ.-1 )
205 IF( .NOT.lsame( uplo, 'U' ) .AND.
206 $ .NOT.lsame( uplo, 'L' ) ) THEN
207 info = -1
208 ELSE IF( n.LT.0 ) THEN
209 info = -2
210 ELSE IF( nrhs.LT.0 ) THEN
211 info = -3
212 ELSE IF( lda.LT.max( 1, n ) ) THEN
213 info = -5
214 ELSE IF( ldb.LT.max( 1, n ) ) THEN
215 info = -8
216 ELSE IF( lwork.LT.1 .AND. .NOT.lquery ) THEN
217 info = -10
218 END IF
219*
220 IF( info.EQ.0 ) THEN
221 IF( n.EQ.0 ) THEN
222 lwkopt = 1
223 ELSE
224 CALL dsytrf( uplo, n, a, lda, ipiv, work, -1, info )
225 lwkopt = int( work( 1 ) )
226 END IF
227 work( 1 ) = lwkopt
228 END IF
229*
230 IF( info.NE.0 ) THEN
231 CALL xerbla( 'DSYSV ', -info )
232 RETURN
233 ELSE IF( lquery ) THEN
234 RETURN
235 END IF
236*
237* Compute the factorization A = U*D*U**T or A = L*D*L**T.
238*
239 CALL dsytrf( uplo, n, a, lda, ipiv, work, lwork, info )
240 IF( info.EQ.0 ) THEN
241*
242* Solve the system A*X = B, overwriting B with X.
243*
244 IF ( lwork.LT.n ) THEN
245*
246* Solve with TRS ( Use Level BLAS 2)
247*
248 CALL dsytrs( uplo, n, nrhs, a, lda, ipiv, b, ldb, info )
249*
250 ELSE
251*
252* Solve with TRS2 ( Use Level BLAS 3)
253*
254 CALL dsytrs2( uplo,n,nrhs,a,lda,ipiv,b,ldb,work,info )
255*
256 END IF
257*
258 END IF
259*
260 work( 1 ) = lwkopt
261*
262 RETURN
263*
264* End of DSYSV
265*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine dsytrf(uplo, n, a, lda, ipiv, work, lwork, info)
DSYTRF
Definition dsytrf.f:180
subroutine dsytrs2(uplo, n, nrhs, a, lda, ipiv, b, ldb, work, info)
DSYTRS2
Definition dsytrs2.f:130
subroutine dsytrs(uplo, n, nrhs, a, lda, ipiv, b, ldb, info)
DSYTRS
Definition dsytrs.f:118
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
Here is the call graph for this function:
Here is the caller graph for this function: