LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
zchkhe.f
Go to the documentation of this file.
1*> \brief \b ZCHKHE
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8* Definition:
9* ===========
10*
11* SUBROUTINE ZCHKHE( DOTYPE, NN, NVAL, NNB, NBVAL, NNS, NSVAL,
12* THRESH, TSTERR, NMAX, A, AFAC, AINV, B, X,
13* XACT, WORK, RWORK, IWORK, NOUT )
14*
15* .. Scalar Arguments ..
16* LOGICAL TSTERR
17* INTEGER NMAX, NN, NNB, NNS, NOUT
18* DOUBLE PRECISION THRESH
19* ..
20* .. Array Arguments ..
21* LOGICAL DOTYPE( * )
22* INTEGER IWORK( * ), NBVAL( * ), NSVAL( * ), NVAL( * )
23* DOUBLE PRECISION RWORK( * )
24* COMPLEX*16 A( * ), AFAC( * ), AINV( * ), B( * ),
25* $ WORK( * ), X( * ), XACT( * )
26* ..
27*
28*
29*> \par Purpose:
30* =============
31*>
32*> \verbatim
33*>
34*> ZCHKHE tests ZHETRF, -TRI2, -TRS, -TRS2, -RFS, and -CON.
35*> \endverbatim
36*
37* Arguments:
38* ==========
39*
40*> \param[in] DOTYPE
41*> \verbatim
42*> DOTYPE is LOGICAL array, dimension (NTYPES)
43*> The matrix types to be used for testing. Matrices of type j
44*> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
45*> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
46*> \endverbatim
47*>
48*> \param[in] NN
49*> \verbatim
50*> NN is INTEGER
51*> The number of values of N contained in the vector NVAL.
52*> \endverbatim
53*>
54*> \param[in] NVAL
55*> \verbatim
56*> NVAL is INTEGER array, dimension (NN)
57*> The values of the matrix dimension N.
58*> \endverbatim
59*>
60*> \param[in] NNB
61*> \verbatim
62*> NNB is INTEGER
63*> The number of values of NB contained in the vector NBVAL.
64*> \endverbatim
65*>
66*> \param[in] NBVAL
67*> \verbatim
68*> NBVAL is INTEGER array, dimension (NNB)
69*> The values of the blocksize NB.
70*> \endverbatim
71*>
72*> \param[in] NNS
73*> \verbatim
74*> NNS is INTEGER
75*> The number of values of NRHS contained in the vector NSVAL.
76*> \endverbatim
77*>
78*> \param[in] NSVAL
79*> \verbatim
80*> NSVAL is INTEGER array, dimension (NNS)
81*> The values of the number of right hand sides NRHS.
82*> \endverbatim
83*>
84*> \param[in] THRESH
85*> \verbatim
86*> THRESH is DOUBLE PRECISION
87*> The threshold value for the test ratios. A result is
88*> included in the output file if RESULT >= THRESH. To have
89*> every test ratio printed, use THRESH = 0.
90*> \endverbatim
91*>
92*> \param[in] TSTERR
93*> \verbatim
94*> TSTERR is LOGICAL
95*> Flag that indicates whether error exits are to be tested.
96*> \endverbatim
97*>
98*> \param[in] NMAX
99*> \verbatim
100*> NMAX is INTEGER
101*> The maximum value permitted for N, used in dimensioning the
102*> work arrays.
103*> \endverbatim
104*>
105*> \param[out] A
106*> \verbatim
107*> A is COMPLEX*16 array, dimension (NMAX*NMAX)
108*> \endverbatim
109*>
110*> \param[out] AFAC
111*> \verbatim
112*> AFAC is COMPLEX*16 array, dimension (NMAX*NMAX)
113*> \endverbatim
114*>
115*> \param[out] AINV
116*> \verbatim
117*> AINV is COMPLEX*16 array, dimension (NMAX*NMAX)
118*> \endverbatim
119*>
120*> \param[out] B
121*> \verbatim
122*> B is COMPLEX*16 array, dimension (NMAX*NSMAX)
123*> where NSMAX is the largest entry in NSVAL.
124*> \endverbatim
125*>
126*> \param[out] X
127*> \verbatim
128*> X is COMPLEX*16 array, dimension (NMAX*NSMAX)
129*> \endverbatim
130*>
131*> \param[out] XACT
132*> \verbatim
133*> XACT is COMPLEX*16 array, dimension (NMAX*NSMAX)
134*> \endverbatim
135*>
136*> \param[out] WORK
137*> \verbatim
138*> WORK is COMPLEX*16 array, dimension (NMAX*max(3,NSMAX))
139*> \endverbatim
140*>
141*> \param[out] RWORK
142*> \verbatim
143*> RWORK is DOUBLE PRECISION array, dimension (max(NMAX,2*NSMAX))
144*> \endverbatim
145*>
146*> \param[out] IWORK
147*> \verbatim
148*> IWORK is INTEGER array, dimension (NMAX)
149*> \endverbatim
150*>
151*> \param[in] NOUT
152*> \verbatim
153*> NOUT is INTEGER
154*> The unit number for output.
155*> \endverbatim
156*
157* Authors:
158* ========
159*
160*> \author Univ. of Tennessee
161*> \author Univ. of California Berkeley
162*> \author Univ. of Colorado Denver
163*> \author NAG Ltd.
164*
165*> \ingroup complex16_lin
166*
167* =====================================================================
168 SUBROUTINE zchkhe( DOTYPE, NN, NVAL, NNB, NBVAL, NNS, NSVAL,
169 $ THRESH, TSTERR, NMAX, A, AFAC, AINV, B, X,
170 $ XACT, WORK, RWORK, IWORK, NOUT )
171*
172* -- LAPACK test routine --
173* -- LAPACK is a software package provided by Univ. of Tennessee, --
174* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
175*
176* .. Scalar Arguments ..
177 LOGICAL TSTERR
178 INTEGER NMAX, NN, NNB, NNS, NOUT
179 DOUBLE PRECISION THRESH
180* ..
181* .. Array Arguments ..
182 LOGICAL DOTYPE( * )
183 INTEGER IWORK( * ), NBVAL( * ), NSVAL( * ), NVAL( * )
184 DOUBLE PRECISION RWORK( * )
185 COMPLEX*16 A( * ), AFAC( * ), AINV( * ), B( * ),
186 $ work( * ), x( * ), xact( * )
187* ..
188*
189* =====================================================================
190*
191* .. Parameters ..
192 DOUBLE PRECISION ZERO
193 PARAMETER ( ZERO = 0.0d+0 )
194 COMPLEX*16 CZERO
195 parameter( czero = ( 0.0d+0, 0.0d+0 ) )
196 INTEGER NTYPES
197 parameter( ntypes = 10 )
198 INTEGER NTESTS
199 parameter( ntests = 9 )
200* ..
201* .. Local Scalars ..
202 LOGICAL TRFCON, ZEROT
203 CHARACTER DIST, TYPE, UPLO, XTYPE
204 CHARACTER*3 PATH
205 INTEGER I, I1, I2, IMAT, IN, INB, INFO, IOFF, IRHS,
206 $ iuplo, izero, j, k, kl, ku, lda, lwork, mode,
207 $ n, nb, nerrs, nfail, nimat, nrhs, nrun, nt
208 DOUBLE PRECISION ANORM, CNDNUM, RCOND, RCONDC
209* ..
210* .. Local Arrays ..
211 CHARACTER UPLOS( 2 )
212 INTEGER ISEED( 4 ), ISEEDY( 4 )
213 DOUBLE PRECISION RESULT( NTESTS )
214* ..
215* .. External Functions ..
216 DOUBLE PRECISION DGET06, ZLANHE
217 EXTERNAL DGET06, ZLANHE
218* ..
219* .. External Subroutines ..
220 EXTERNAL alaerh, alahd, alasum, xlaenv, zerrhe, zget04,
224* ..
225* .. Intrinsic Functions ..
226 INTRINSIC max, min
227* ..
228* .. Scalars in Common ..
229 LOGICAL LERR, OK
230 CHARACTER*32 SRNAMT
231 INTEGER INFOT, NUNIT
232* ..
233* .. Common blocks ..
234 COMMON / infoc / infot, nunit, ok, lerr
235 COMMON / srnamc / srnamt
236* ..
237* .. Data statements ..
238 DATA iseedy / 1988, 1989, 1990, 1991 /
239 DATA uplos / 'U', 'L' /
240* ..
241* .. Executable Statements ..
242*
243* Initialize constants and the random number seed.
244*
245 path( 1: 1 ) = 'Zomplex precision'
246 path( 2: 3 ) = 'HE'
247 nrun = 0
248 nfail = 0
249 nerrs = 0
250 DO 10 i = 1, 4
251 iseed( i ) = iseedy( i )
252 10 CONTINUE
253*
254* Test the error exits
255*
256 IF( tsterr )
257 $ CALL zerrhe( path, nout )
258 infot = 0
259*
260* Set the minimum block size for which the block routine should
261* be used, which will be later returned by ILAENV
262*
263 CALL xlaenv( 2, 2 )
264*
265* Do for each value of N in NVAL
266*
267 DO 180 in = 1, nn
268 n = nval( in )
269 lda = max( n, 1 )
270 xtype = 'N'
271 nimat = ntypes
272 IF( n.LE.0 )
273 $ nimat = 1
274*
275 izero = 0
276 DO 170 imat = 1, nimat
277*
278* Do the tests only if DOTYPE( IMAT ) is true.
279*
280 IF( .NOT.dotype( imat ) )
281 $ GO TO 170
282*
283* Skip types 3, 4, 5, or 6 if the matrix size is too small.
284*
285 zerot = imat.GE.3 .AND. imat.LE.6
286 IF( zerot .AND. n.LT.imat-2 )
287 $ GO TO 170
288*
289* Do first for UPLO = 'U', then for UPLO = 'L'
290*
291 DO 160 iuplo = 1, 2
292 uplo = uplos( iuplo )
293*
294* Set up parameters with ZLATB4 for the matrix generator
295* based on the type of matrix to be generated.
296*
297 CALL zlatb4( path, imat, n, n, TYPE, kl, ku, anorm, mode,
298 $ cndnum, dist )
299*
300* Generate a matrix with ZLATMS.
301*
302 srnamt = 'ZLATMS'
303 CALL zlatms( n, n, dist, iseed, TYPE, rwork, mode,
304 $ cndnum, anorm, kl, ku, uplo, a, lda, work,
305 $ info )
306*
307* Check error code from ZLATMS and handle error.
308*
309 IF( info.NE.0 ) THEN
310 CALL alaerh( path, 'ZLATMS', info, 0, uplo, n, n, -1,
311 $ -1, -1, imat, nfail, nerrs, nout )
312*
313* Skip all tests for this generated matrix
314*
315 GO TO 160
316 END IF
317*
318* For types 3-6, zero one or more rows and columns of
319* the matrix to test that INFO is returned correctly.
320*
321 IF( zerot ) THEN
322 IF( imat.EQ.3 ) THEN
323 izero = 1
324 ELSE IF( imat.EQ.4 ) THEN
325 izero = n
326 ELSE
327 izero = n / 2 + 1
328 END IF
329*
330 IF( imat.LT.6 ) THEN
331*
332* Set row and column IZERO to zero.
333*
334 IF( iuplo.EQ.1 ) THEN
335 ioff = ( izero-1 )*lda
336 DO 20 i = 1, izero - 1
337 a( ioff+i ) = czero
338 20 CONTINUE
339 ioff = ioff + izero
340 DO 30 i = izero, n
341 a( ioff ) = czero
342 ioff = ioff + lda
343 30 CONTINUE
344 ELSE
345 ioff = izero
346 DO 40 i = 1, izero - 1
347 a( ioff ) = czero
348 ioff = ioff + lda
349 40 CONTINUE
350 ioff = ioff - izero
351 DO 50 i = izero, n
352 a( ioff+i ) = czero
353 50 CONTINUE
354 END IF
355 ELSE
356 IF( iuplo.EQ.1 ) THEN
357*
358* Set the first IZERO rows and columns to zero.
359*
360 ioff = 0
361 DO 70 j = 1, n
362 i2 = min( j, izero )
363 DO 60 i = 1, i2
364 a( ioff+i ) = czero
365 60 CONTINUE
366 ioff = ioff + lda
367 70 CONTINUE
368 ELSE
369*
370* Set the last IZERO rows and columns to zero.
371*
372 ioff = 0
373 DO 90 j = 1, n
374 i1 = max( j, izero )
375 DO 80 i = i1, n
376 a( ioff+i ) = czero
377 80 CONTINUE
378 ioff = ioff + lda
379 90 CONTINUE
380 END IF
381 END IF
382 ELSE
383 izero = 0
384 END IF
385*
386* End generate test matrix A.
387*
388*
389* Set the imaginary part of the diagonals.
390*
391 CALL zlaipd( n, a, lda+1, 0 )
392*
393* Do for each value of NB in NBVAL
394*
395 DO 150 inb = 1, nnb
396*
397* Set the optimal blocksize, which will be later
398* returned by ILAENV.
399*
400 nb = nbval( inb )
401 CALL xlaenv( 1, nb )
402*
403* Copy the test matrix A into matrix AFAC which
404* will be factorized in place. This is needed to
405* preserve the test matrix A for subsequent tests.
406*
407 CALL zlacpy( uplo, n, n, a, lda, afac, lda )
408*
409* Compute the L*D*L**T or U*D*U**T factorization of the
410* matrix. IWORK stores details of the interchanges and
411* the block structure of D. AINV is a work array for
412* block factorization, LWORK is the length of AINV.
413*
414 lwork = max( 2, nb )*lda
415 srnamt = 'ZHETRF'
416 CALL zhetrf( uplo, n, afac, lda, iwork, ainv, lwork,
417 $ info )
418*
419* Adjust the expected value of INFO to account for
420* pivoting.
421*
422 k = izero
423 IF( k.GT.0 ) THEN
424 100 CONTINUE
425 IF( iwork( k ).LT.0 ) THEN
426 IF( iwork( k ).NE.-k ) THEN
427 k = -iwork( k )
428 GO TO 100
429 END IF
430 ELSE IF( iwork( k ).NE.k ) THEN
431 k = iwork( k )
432 GO TO 100
433 END IF
434 END IF
435*
436* Check error code from ZHETRF and handle error.
437*
438 IF( info.NE.k )
439 $ CALL alaerh( path, 'ZHETRF', info, k, uplo, n, n,
440 $ -1, -1, nb, imat, nfail, nerrs, nout )
441*
442* Set the condition estimate flag if the INFO is not 0.
443*
444 IF( info.NE.0 ) THEN
445 trfcon = .true.
446 ELSE
447 trfcon = .false.
448 END IF
449*
450*+ TEST 1
451* Reconstruct matrix from factors and compute residual.
452*
453 CALL zhet01( uplo, n, a, lda, afac, lda, iwork, ainv,
454 $ lda, rwork, result( 1 ) )
455 nt = 1
456*
457*+ TEST 2
458* Form the inverse and compute the residual.
459*
460 IF( inb.EQ.1 .AND. .NOT.trfcon ) THEN
461 CALL zlacpy( uplo, n, n, afac, lda, ainv, lda )
462 srnamt = 'ZHETRI2'
463 lwork = (n+nb+1)*(nb+3)
464 CALL zhetri2( uplo, n, ainv, lda, iwork, work,
465 $ lwork, info )
466*
467* Check error code from ZHETRI and handle error.
468*
469 IF( info.NE.0 )
470 $ CALL alaerh( path, 'ZHETRI', info, -1, uplo, n,
471 $ n, -1, -1, -1, imat, nfail, nerrs,
472 $ nout )
473*
474* Compute the residual for a symmetric matrix times
475* its inverse.
476*
477 CALL zpot03( uplo, n, a, lda, ainv, lda, work, lda,
478 $ rwork, rcondc, result( 2 ) )
479 nt = 2
480 END IF
481*
482* Print information about the tests that did not pass
483* the threshold.
484*
485 DO 110 k = 1, nt
486 IF( result( k ).GE.thresh ) THEN
487 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
488 $ CALL alahd( nout, path )
489 WRITE( nout, fmt = 9999 )uplo, n, nb, imat, k,
490 $ result( k )
491 nfail = nfail + 1
492 END IF
493 110 CONTINUE
494 nrun = nrun + nt
495*
496* Skip the other tests if this is not the first block
497* size.
498*
499 IF( inb.GT.1 )
500 $ GO TO 150
501*
502* Do only the condition estimate if INFO is not 0.
503*
504 IF( trfcon ) THEN
505 rcondc = zero
506 GO TO 140
507 END IF
508*
509* Do for each value of NRHS in NSVAL.
510*
511 DO 130 irhs = 1, nns
512 nrhs = nsval( irhs )
513*
514*+ TEST 3 (Using TRS)
515* Solve and compute residual for A * X = B.
516*
517* Choose a set of NRHS random solution vectors
518* stored in XACT and set up the right hand side B
519*
520 srnamt = 'ZLARHS'
521 CALL zlarhs( path, xtype, uplo, ' ', n, n, kl, ku,
522 $ nrhs, a, lda, xact, lda, b, lda,
523 $ iseed, info )
524 CALL zlacpy( 'Full', n, nrhs, b, lda, x, lda )
525*
526 srnamt = 'ZHETRS'
527 CALL zhetrs( uplo, n, nrhs, afac, lda, iwork, x,
528 $ lda, info )
529*
530* Check error code from ZHETRS and handle error.
531*
532 IF( info.NE.0 )
533 $ CALL alaerh( path, 'ZHETRS', info, 0, uplo, n,
534 $ n, -1, -1, nrhs, imat, nfail,
535 $ nerrs, nout )
536*
537 CALL zlacpy( 'Full', n, nrhs, b, lda, work, lda )
538*
539* Compute the residual for the solution
540*
541 CALL zpot02( uplo, n, nrhs, a, lda, x, lda, work,
542 $ lda, rwork, result( 3 ) )
543*
544*+ TEST 4 (Using TRS2)
545* Solve and compute residual for A * X = B.
546*
547* Choose a set of NRHS random solution vectors
548* stored in XACT and set up the right hand side B
549*
550 srnamt = 'ZLARHS'
551 CALL zlarhs( path, xtype, uplo, ' ', n, n, kl, ku,
552 $ nrhs, a, lda, xact, lda, b, lda,
553 $ iseed, info )
554 CALL zlacpy( 'Full', n, nrhs, b, lda, x, lda )
555*
556 srnamt = 'ZHETRS2'
557 CALL zhetrs2( uplo, n, nrhs, afac, lda, iwork, x,
558 $ lda, work, info )
559*
560* Check error code from ZHETRS2 and handle error.
561*
562 IF( info.NE.0 )
563 $ CALL alaerh( path, 'ZHETRS2', info, 0, uplo, n,
564 $ n, -1, -1, nrhs, imat, nfail,
565 $ nerrs, nout )
566*
567 CALL zlacpy( 'Full', n, nrhs, b, lda, work, lda )
568*
569* Compute the residual for the solution
570*
571 CALL zpot02( uplo, n, nrhs, a, lda, x, lda, work,
572 $ lda, rwork, result( 4 ) )
573*
574*+ TEST 5
575* Check solution from generated exact solution.
576*
577 CALL zget04( n, nrhs, x, lda, xact, lda, rcondc,
578 $ result( 5 ) )
579*
580*+ TESTS 6, 7, and 8
581* Use iterative refinement to improve the solution.
582*
583 srnamt = 'ZHERFS'
584 CALL zherfs( uplo, n, nrhs, a, lda, afac, lda,
585 $ iwork, b, lda, x, lda, rwork,
586 $ rwork( nrhs+1 ), work,
587 $ rwork( 2*nrhs+1 ), info )
588*
589* Check error code from ZHERFS.
590*
591 IF( info.NE.0 )
592 $ CALL alaerh( path, 'ZHERFS', info, 0, uplo, n,
593 $ n, -1, -1, nrhs, imat, nfail,
594 $ nerrs, nout )
595*
596 CALL zget04( n, nrhs, x, lda, xact, lda, rcondc,
597 $ result( 6 ) )
598 CALL zpot05( uplo, n, nrhs, a, lda, b, lda, x, lda,
599 $ xact, lda, rwork, rwork( nrhs+1 ),
600 $ result( 7 ) )
601*
602* Print information about the tests that did not pass
603* the threshold.
604*
605 DO 120 k = 3, 8
606 IF( result( k ).GE.thresh ) THEN
607 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
608 $ CALL alahd( nout, path )
609 WRITE( nout, fmt = 9998 )uplo, n, nrhs,
610 $ imat, k, result( k )
611 nfail = nfail + 1
612 END IF
613 120 CONTINUE
614 nrun = nrun + 6
615*
616* End do for each value of NRHS in NSVAL.
617*
618 130 CONTINUE
619*
620*+ TEST 9
621* Get an estimate of RCOND = 1/CNDNUM.
622*
623 140 CONTINUE
624 anorm = zlanhe( '1', uplo, n, a, lda, rwork )
625 srnamt = 'ZHECON'
626 CALL zhecon( uplo, n, afac, lda, iwork, anorm, rcond,
627 $ work, info )
628*
629* Check error code from ZHECON and handle error.
630*
631 IF( info.NE.0 )
632 $ CALL alaerh( path, 'ZHECON', info, 0, uplo, n, n,
633 $ -1, -1, -1, imat, nfail, nerrs, nout )
634*
635 result( 9 ) = dget06( rcond, rcondc )
636*
637* Print information about the tests that did not pass
638* the threshold.
639*
640 IF( result( 9 ).GE.thresh ) THEN
641 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
642 $ CALL alahd( nout, path )
643 WRITE( nout, fmt = 9997 )uplo, n, imat, 9,
644 $ result( 9 )
645 nfail = nfail + 1
646 END IF
647 nrun = nrun + 1
648 150 CONTINUE
649 160 CONTINUE
650 170 CONTINUE
651 180 CONTINUE
652*
653* Print a summary of the results.
654*
655 CALL alasum( path, nout, nfail, nrun, nerrs )
656*
657 9999 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ', NB =', i4, ', type ',
658 $ i2, ', test ', i2, ', ratio =', g12.5 )
659 9998 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ', NRHS=', i3, ', type ',
660 $ i2, ', test(', i2, ') =', g12.5 )
661 9997 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ',', 10x, ' type ', i2,
662 $ ', test(', i2, ') =', g12.5 )
663 RETURN
664*
665* End of ZCHKHE
666*
667 END
subroutine alasum(type, nout, nfail, nrun, nerrs)
ALASUM
Definition alasum.f:73
subroutine xlaenv(ispec, nvalue)
XLAENV
Definition xlaenv.f:81
subroutine zlarhs(path, xtype, uplo, trans, m, n, kl, ku, nrhs, a, lda, x, ldx, b, ldb, iseed, info)
ZLARHS
Definition zlarhs.f:208
subroutine alaerh(path, subnam, info, infoe, opts, m, n, kl, ku, n5, imat, nfail, nerrs, nout)
ALAERH
Definition alaerh.f:147
subroutine alahd(iounit, path)
ALAHD
Definition alahd.f:107
subroutine zhecon(uplo, n, a, lda, ipiv, anorm, rcond, work, info)
ZHECON
Definition zhecon.f:123
subroutine zherfs(uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, ferr, berr, work, rwork, info)
ZHERFS
Definition zherfs.f:191
subroutine zhetrf(uplo, n, a, lda, ipiv, work, lwork, info)
ZHETRF
Definition zhetrf.f:175
subroutine zhetri2(uplo, n, a, lda, ipiv, work, lwork, info)
ZHETRI2
Definition zhetri2.f:125
subroutine zhetrs2(uplo, n, nrhs, a, lda, ipiv, b, ldb, work, info)
ZHETRS2
Definition zhetrs2.f:125
subroutine zhetrs(uplo, n, nrhs, a, lda, ipiv, b, ldb, info)
ZHETRS
Definition zhetrs.f:118
subroutine zlacpy(uplo, m, n, a, lda, b, ldb)
ZLACPY copies all or part of one two-dimensional array to another.
Definition zlacpy.f:101
subroutine zchkhe(dotype, nn, nval, nnb, nbval, nns, nsval, thresh, tsterr, nmax, a, afac, ainv, b, x, xact, work, rwork, iwork, nout)
ZCHKHE
Definition zchkhe.f:171
subroutine zerrhe(path, nunit)
ZERRHE
Definition zerrhe.f:55
subroutine zget04(n, nrhs, x, ldx, xact, ldxact, rcond, resid)
ZGET04
Definition zget04.f:102
subroutine zhet01(uplo, n, a, lda, afac, ldafac, ipiv, c, ldc, rwork, resid)
ZHET01
Definition zhet01.f:126
subroutine zlaipd(n, a, inda, vinda)
ZLAIPD
Definition zlaipd.f:83
subroutine zlatb4(path, imat, m, n, type, kl, ku, anorm, mode, cndnum, dist)
ZLATB4
Definition zlatb4.f:121
subroutine zlatms(m, n, dist, iseed, sym, d, mode, cond, dmax, kl, ku, pack, a, lda, work, info)
ZLATMS
Definition zlatms.f:332
subroutine zpot02(uplo, n, nrhs, a, lda, x, ldx, b, ldb, rwork, resid)
ZPOT02
Definition zpot02.f:127
subroutine zpot03(uplo, n, a, lda, ainv, ldainv, work, ldwork, rwork, rcond, resid)
ZPOT03
Definition zpot03.f:126
subroutine zpot05(uplo, n, nrhs, a, lda, b, ldb, x, ldx, xact, ldxact, ferr, berr, reslts)
ZPOT05
Definition zpot05.f:165