LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
|
subroutine zhet01 | ( | character | uplo, |
integer | n, | ||
complex*16, dimension( lda, * ) | a, | ||
integer | lda, | ||
complex*16, dimension( ldafac, * ) | afac, | ||
integer | ldafac, | ||
integer, dimension( * ) | ipiv, | ||
complex*16, dimension( ldc, * ) | c, | ||
integer | ldc, | ||
double precision, dimension( * ) | rwork, | ||
double precision | resid ) |
ZHET01
!> !> ZHET01 reconstructs a Hermitian indefinite matrix A from its !> block L*D*L' or U*D*U' factorization and computes the residual !> norm( C - A ) / ( N * norm(A) * EPS ), !> where C is the reconstructed matrix, EPS is the machine epsilon, !> L' is the conjugate transpose of L, and U' is the conjugate transpose !> of U. !>
[in] | UPLO | !> UPLO is CHARACTER*1 !> Specifies whether the upper or lower triangular part of the !> Hermitian matrix A is stored: !> = 'U': Upper triangular !> = 'L': Lower triangular !> |
[in] | N | !> N is INTEGER !> The number of rows and columns of the matrix A. N >= 0. !> |
[in] | A | !> A is COMPLEX*16 array, dimension (LDA,N) !> The original Hermitian matrix A. !> |
[in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N) !> |
[in] | AFAC | !> AFAC is COMPLEX*16 array, dimension (LDAFAC,N) !> The factored form of the matrix A. AFAC contains the block !> diagonal matrix D and the multipliers used to obtain the !> factor L or U from the block L*D*L' or U*D*U' factorization !> as computed by ZHETRF. !> |
[in] | LDAFAC | !> LDAFAC is INTEGER !> The leading dimension of the array AFAC. LDAFAC >= max(1,N). !> |
[in] | IPIV | !> IPIV is INTEGER array, dimension (N) !> The pivot indices from ZHETRF. !> |
[out] | C | !> C is COMPLEX*16 array, dimension (LDC,N) !> |
[in] | LDC | !> LDC is INTEGER !> The leading dimension of the array C. LDC >= max(1,N). !> |
[out] | RWORK | !> RWORK is DOUBLE PRECISION array, dimension (N) !> |
[out] | RESID | !> RESID is DOUBLE PRECISION !> If UPLO = 'L', norm(L*D*L' - A) / ( N * norm(A) * EPS ) !> If UPLO = 'U', norm(U*D*U' - A) / ( N * norm(A) * EPS ) !> |
Definition at line 124 of file zhet01.f.