LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
zpot05.f
Go to the documentation of this file.
1*> \brief \b ZPOT05
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8* Definition:
9* ===========
10*
11* SUBROUTINE ZPOT05( UPLO, N, NRHS, A, LDA, B, LDB, X, LDX, XACT,
12* LDXACT, FERR, BERR, RESLTS )
13*
14* .. Scalar Arguments ..
15* CHARACTER UPLO
16* INTEGER LDA, LDB, LDX, LDXACT, N, NRHS
17* ..
18* .. Array Arguments ..
19* DOUBLE PRECISION BERR( * ), FERR( * ), RESLTS( * )
20* COMPLEX*16 A( LDA, * ), B( LDB, * ), X( LDX, * ),
21* $ XACT( LDXACT, * )
22* ..
23*
24*
25*> \par Purpose:
26* =============
27*>
28*> \verbatim
29*>
30*> ZPOT05 tests the error bounds from iterative refinement for the
31*> computed solution to a system of equations A*X = B, where A is a
32*> Hermitian n by n matrix.
33*>
34*> RESLTS(1) = test of the error bound
35*> = norm(X - XACT) / ( norm(X) * FERR )
36*>
37*> A large value is returned if this ratio is not less than one.
38*>
39*> RESLTS(2) = residual from the iterative refinement routine
40*> = the maximum of BERR / ( (n+1)*EPS + (*) ), where
41*> (*) = (n+1)*UNFL / (min_i (abs(A)*abs(X) +abs(b))_i )
42*> \endverbatim
43*
44* Arguments:
45* ==========
46*
47*> \param[in] UPLO
48*> \verbatim
49*> UPLO is CHARACTER*1
50*> Specifies whether the upper or lower triangular part of the
51*> Hermitian matrix A is stored.
52*> = 'U': Upper triangular
53*> = 'L': Lower triangular
54*> \endverbatim
55*>
56*> \param[in] N
57*> \verbatim
58*> N is INTEGER
59*> The number of rows of the matrices X, B, and XACT, and the
60*> order of the matrix A. N >= 0.
61*> \endverbatim
62*>
63*> \param[in] NRHS
64*> \verbatim
65*> NRHS is INTEGER
66*> The number of columns of the matrices X, B, and XACT.
67*> NRHS >= 0.
68*> \endverbatim
69*>
70*> \param[in] A
71*> \verbatim
72*> A is COMPLEX*16 array, dimension (LDA,N)
73*> The Hermitian matrix A. If UPLO = 'U', the leading n by n
74*> upper triangular part of A contains the upper triangular part
75*> of the matrix A, and the strictly lower triangular part of A
76*> is not referenced. If UPLO = 'L', the leading n by n lower
77*> triangular part of A contains the lower triangular part of
78*> the matrix A, and the strictly upper triangular part of A is
79*> not referenced.
80*> \endverbatim
81*>
82*> \param[in] LDA
83*> \verbatim
84*> LDA is INTEGER
85*> The leading dimension of the array A. LDA >= max(1,N).
86*> \endverbatim
87*>
88*> \param[in] B
89*> \verbatim
90*> B is COMPLEX*16 array, dimension (LDB,NRHS)
91*> The right hand side vectors for the system of linear
92*> equations.
93*> \endverbatim
94*>
95*> \param[in] LDB
96*> \verbatim
97*> LDB is INTEGER
98*> The leading dimension of the array B. LDB >= max(1,N).
99*> \endverbatim
100*>
101*> \param[in] X
102*> \verbatim
103*> X is COMPLEX*16 array, dimension (LDX,NRHS)
104*> The computed solution vectors. Each vector is stored as a
105*> column of the matrix X.
106*> \endverbatim
107*>
108*> \param[in] LDX
109*> \verbatim
110*> LDX is INTEGER
111*> The leading dimension of the array X. LDX >= max(1,N).
112*> \endverbatim
113*>
114*> \param[in] XACT
115*> \verbatim
116*> XACT is COMPLEX*16 array, dimension (LDX,NRHS)
117*> The exact solution vectors. Each vector is stored as a
118*> column of the matrix XACT.
119*> \endverbatim
120*>
121*> \param[in] LDXACT
122*> \verbatim
123*> LDXACT is INTEGER
124*> The leading dimension of the array XACT. LDXACT >= max(1,N).
125*> \endverbatim
126*>
127*> \param[in] FERR
128*> \verbatim
129*> FERR is DOUBLE PRECISION array, dimension (NRHS)
130*> The estimated forward error bounds for each solution vector
131*> X. If XTRUE is the true solution, FERR bounds the magnitude
132*> of the largest entry in (X - XTRUE) divided by the magnitude
133*> of the largest entry in X.
134*> \endverbatim
135*>
136*> \param[in] BERR
137*> \verbatim
138*> BERR is DOUBLE PRECISION array, dimension (NRHS)
139*> The componentwise relative backward error of each solution
140*> vector (i.e., the smallest relative change in any entry of A
141*> or B that makes X an exact solution).
142*> \endverbatim
143*>
144*> \param[out] RESLTS
145*> \verbatim
146*> RESLTS is DOUBLE PRECISION array, dimension (2)
147*> The maximum over the NRHS solution vectors of the ratios:
148*> RESLTS(1) = norm(X - XACT) / ( norm(X) * FERR )
149*> RESLTS(2) = BERR / ( (n+1)*EPS + (*) )
150*> \endverbatim
151*
152* Authors:
153* ========
154*
155*> \author Univ. of Tennessee
156*> \author Univ. of California Berkeley
157*> \author Univ. of Colorado Denver
158*> \author NAG Ltd.
159*
160*> \ingroup complex16_lin
161*
162* =====================================================================
163 SUBROUTINE zpot05( UPLO, N, NRHS, A, LDA, B, LDB, X, LDX, XACT,
164 $ LDXACT, FERR, BERR, RESLTS )
165*
166* -- LAPACK test routine --
167* -- LAPACK is a software package provided by Univ. of Tennessee, --
168* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
169*
170* .. Scalar Arguments ..
171 CHARACTER UPLO
172 INTEGER LDA, LDB, LDX, LDXACT, N, NRHS
173* ..
174* .. Array Arguments ..
175 DOUBLE PRECISION BERR( * ), FERR( * ), RESLTS( * )
176 COMPLEX*16 A( LDA, * ), B( LDB, * ), X( LDX, * ),
177 $ xact( ldxact, * )
178* ..
179*
180* =====================================================================
181*
182* .. Parameters ..
183 DOUBLE PRECISION ZERO, ONE
184 parameter( zero = 0.0d+0, one = 1.0d+0 )
185* ..
186* .. Local Scalars ..
187 LOGICAL UPPER
188 INTEGER I, IMAX, J, K
189 DOUBLE PRECISION AXBI, DIFF, EPS, ERRBND, OVFL, TMP, UNFL, XNORM
190 COMPLEX*16 ZDUM
191* ..
192* .. External Functions ..
193 LOGICAL LSAME
194 INTEGER IZAMAX
195 DOUBLE PRECISION DLAMCH
196 EXTERNAL lsame, izamax, dlamch
197* ..
198* .. Intrinsic Functions ..
199 INTRINSIC abs, dble, dimag, max, min
200* ..
201* .. Statement Functions ..
202 DOUBLE PRECISION CABS1
203* ..
204* .. Statement Function definitions ..
205 cabs1( zdum ) = abs( dble( zdum ) ) + abs( dimag( zdum ) )
206* ..
207* .. Executable Statements ..
208*
209* Quick exit if N = 0 or NRHS = 0.
210*
211 IF( n.LE.0 .OR. nrhs.LE.0 ) THEN
212 reslts( 1 ) = zero
213 reslts( 2 ) = zero
214 RETURN
215 END IF
216*
217 eps = dlamch( 'Epsilon' )
218 unfl = dlamch( 'Safe minimum' )
219 ovfl = one / unfl
220 upper = lsame( uplo, 'U' )
221*
222* Test 1: Compute the maximum of
223* norm(X - XACT) / ( norm(X) * FERR )
224* over all the vectors X and XACT using the infinity-norm.
225*
226 errbnd = zero
227 DO 30 j = 1, nrhs
228 imax = izamax( n, x( 1, j ), 1 )
229 xnorm = max( cabs1( x( imax, j ) ), unfl )
230 diff = zero
231 DO 10 i = 1, n
232 diff = max( diff, cabs1( x( i, j )-xact( i, j ) ) )
233 10 CONTINUE
234*
235 IF( xnorm.GT.one ) THEN
236 GO TO 20
237 ELSE IF( diff.LE.ovfl*xnorm ) THEN
238 GO TO 20
239 ELSE
240 errbnd = one / eps
241 GO TO 30
242 END IF
243*
244 20 CONTINUE
245 IF( diff / xnorm.LE.ferr( j ) ) THEN
246 errbnd = max( errbnd, ( diff / xnorm ) / ferr( j ) )
247 ELSE
248 errbnd = one / eps
249 END IF
250 30 CONTINUE
251 reslts( 1 ) = errbnd
252*
253* Test 2: Compute the maximum of BERR / ( (n+1)*EPS + (*) ), where
254* (*) = (n+1)*UNFL / (min_i (abs(A)*abs(X) +abs(b))_i )
255*
256 DO 90 k = 1, nrhs
257 DO 80 i = 1, n
258 tmp = cabs1( b( i, k ) )
259 IF( upper ) THEN
260 DO 40 j = 1, i - 1
261 tmp = tmp + cabs1( a( j, i ) )*cabs1( x( j, k ) )
262 40 CONTINUE
263 tmp = tmp + abs( dble( a( i, i ) ) )*cabs1( x( i, k ) )
264 DO 50 j = i + 1, n
265 tmp = tmp + cabs1( a( i, j ) )*cabs1( x( j, k ) )
266 50 CONTINUE
267 ELSE
268 DO 60 j = 1, i - 1
269 tmp = tmp + cabs1( a( i, j ) )*cabs1( x( j, k ) )
270 60 CONTINUE
271 tmp = tmp + abs( dble( a( i, i ) ) )*cabs1( x( i, k ) )
272 DO 70 j = i + 1, n
273 tmp = tmp + cabs1( a( j, i ) )*cabs1( x( j, k ) )
274 70 CONTINUE
275 END IF
276 IF( i.EQ.1 ) THEN
277 axbi = tmp
278 ELSE
279 axbi = min( axbi, tmp )
280 END IF
281 80 CONTINUE
282 tmp = berr( k ) / ( ( n+1 )*eps+( n+1 )*unfl /
283 $ max( axbi, ( n+1 )*unfl ) )
284 IF( k.EQ.1 ) THEN
285 reslts( 2 ) = tmp
286 ELSE
287 reslts( 2 ) = max( reslts( 2 ), tmp )
288 END IF
289 90 CONTINUE
290*
291 RETURN
292*
293* End of ZPOT05
294*
295 END
subroutine zpot05(uplo, n, nrhs, a, lda, b, ldb, x, ldx, xact, ldxact, ferr, berr, reslts)
ZPOT05
Definition zpot05.f:165