LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
|
subroutine zgqrts | ( | integer | n, |
integer | m, | ||
integer | p, | ||
complex*16, dimension( lda, * ) | a, | ||
complex*16, dimension( lda, * ) | af, | ||
complex*16, dimension( lda, * ) | q, | ||
complex*16, dimension( lda, * ) | r, | ||
integer | lda, | ||
complex*16, dimension( * ) | taua, | ||
complex*16, dimension( ldb, * ) | b, | ||
complex*16, dimension( ldb, * ) | bf, | ||
complex*16, dimension( ldb, * ) | z, | ||
complex*16, dimension( ldb, * ) | t, | ||
complex*16, dimension( ldb, * ) | bwk, | ||
integer | ldb, | ||
complex*16, dimension( * ) | taub, | ||
complex*16, dimension( lwork ) | work, | ||
integer | lwork, | ||
double precision, dimension( * ) | rwork, | ||
double precision, dimension( 4 ) | result ) |
ZGQRTS
!> !> ZGQRTS tests ZGGQRF, which computes the GQR factorization of an !> N-by-M matrix A and a N-by-P matrix B: A = Q*R and B = Q*T*Z. !>
[in] | N | !> N is INTEGER !> The number of rows of the matrices A and B. N >= 0. !> |
[in] | M | !> M is INTEGER !> The number of columns of the matrix A. M >= 0. !> |
[in] | P | !> P is INTEGER !> The number of columns of the matrix B. P >= 0. !> |
[in] | A | !> A is COMPLEX*16 array, dimension (LDA,M) !> The N-by-M matrix A. !> |
[out] | AF | !> AF is COMPLEX*16 array, dimension (LDA,N) !> Details of the GQR factorization of A and B, as returned !> by ZGGQRF, see CGGQRF for further details. !> |
[out] | Q | !> Q is COMPLEX*16 array, dimension (LDA,N) !> The M-by-M unitary matrix Q. !> |
[out] | R | !> R is COMPLEX*16 array, dimension (LDA,MAX(M,N)) !> |
[in] | LDA | !> LDA is INTEGER !> The leading dimension of the arrays A, AF, R and Q. !> LDA >= max(M,N). !> |
[out] | TAUA | !> TAUA is COMPLEX*16 array, dimension (min(M,N)) !> The scalar factors of the elementary reflectors, as returned !> by ZGGQRF. !> |
[in] | B | !> B is COMPLEX*16 array, dimension (LDB,P) !> On entry, the N-by-P matrix A. !> |
[out] | BF | !> BF is COMPLEX*16 array, dimension (LDB,N) !> Details of the GQR factorization of A and B, as returned !> by ZGGQRF, see CGGQRF for further details. !> |
[out] | Z | !> Z is COMPLEX*16 array, dimension (LDB,P) !> The P-by-P unitary matrix Z. !> |
[out] | T | !> T is COMPLEX*16 array, dimension (LDB,max(P,N)) !> |
[out] | BWK | !> BWK is COMPLEX*16 array, dimension (LDB,N) !> |
[in] | LDB | !> LDB is INTEGER !> The leading dimension of the arrays B, BF, Z and T. !> LDB >= max(P,N). !> |
[out] | TAUB | !> TAUB is COMPLEX*16 array, dimension (min(P,N)) !> The scalar factors of the elementary reflectors, as returned !> by DGGRQF. !> |
[out] | WORK | !> WORK is COMPLEX*16 array, dimension (LWORK) !> |
[in] | LWORK | !> LWORK is INTEGER !> The dimension of the array WORK, LWORK >= max(N,M,P)**2. !> |
[out] | RWORK | !> RWORK is DOUBLE PRECISION array, dimension (max(N,M,P)) !> |
[out] | RESULT | !> RESULT is DOUBLE PRECISION array, dimension (4) !> The test ratios: !> RESULT(1) = norm( R - Q'*A ) / ( MAX(M,N)*norm(A)*ULP) !> RESULT(2) = norm( T*Z - Q'*B ) / (MAX(P,N)*norm(B)*ULP) !> RESULT(3) = norm( I - Q'*Q ) / ( M*ULP ) !> RESULT(4) = norm( I - Z'*Z ) / ( P*ULP ) !> |
Definition at line 174 of file zgqrts.f.