LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
|
subroutine zgqrts | ( | integer | n, |
integer | m, | ||
integer | p, | ||
complex*16, dimension( lda, * ) | a, | ||
complex*16, dimension( lda, * ) | af, | ||
complex*16, dimension( lda, * ) | q, | ||
complex*16, dimension( lda, * ) | r, | ||
integer | lda, | ||
complex*16, dimension( * ) | taua, | ||
complex*16, dimension( ldb, * ) | b, | ||
complex*16, dimension( ldb, * ) | bf, | ||
complex*16, dimension( ldb, * ) | z, | ||
complex*16, dimension( ldb, * ) | t, | ||
complex*16, dimension( ldb, * ) | bwk, | ||
integer | ldb, | ||
complex*16, dimension( * ) | taub, | ||
complex*16, dimension( lwork ) | work, | ||
integer | lwork, | ||
double precision, dimension( * ) | rwork, | ||
double precision, dimension( 4 ) | result | ||
) |
ZGQRTS
ZGQRTS tests ZGGQRF, which computes the GQR factorization of an N-by-M matrix A and a N-by-P matrix B: A = Q*R and B = Q*T*Z.
[in] | N | N is INTEGER The number of rows of the matrices A and B. N >= 0. |
[in] | M | M is INTEGER The number of columns of the matrix A. M >= 0. |
[in] | P | P is INTEGER The number of columns of the matrix B. P >= 0. |
[in] | A | A is COMPLEX*16 array, dimension (LDA,M) The N-by-M matrix A. |
[out] | AF | AF is COMPLEX*16 array, dimension (LDA,N) Details of the GQR factorization of A and B, as returned by ZGGQRF, see CGGQRF for further details. |
[out] | Q | Q is COMPLEX*16 array, dimension (LDA,N) The M-by-M unitary matrix Q. |
[out] | R | R is COMPLEX*16 array, dimension (LDA,MAX(M,N)) |
[in] | LDA | LDA is INTEGER The leading dimension of the arrays A, AF, R and Q. LDA >= max(M,N). |
[out] | TAUA | TAUA is COMPLEX*16 array, dimension (min(M,N)) The scalar factors of the elementary reflectors, as returned by ZGGQRF. |
[in] | B | B is COMPLEX*16 array, dimension (LDB,P) On entry, the N-by-P matrix A. |
[out] | BF | BF is COMPLEX*16 array, dimension (LDB,N) Details of the GQR factorization of A and B, as returned by ZGGQRF, see CGGQRF for further details. |
[out] | Z | Z is COMPLEX*16 array, dimension (LDB,P) The P-by-P unitary matrix Z. |
[out] | T | T is COMPLEX*16 array, dimension (LDB,max(P,N)) |
[out] | BWK | BWK is COMPLEX*16 array, dimension (LDB,N) |
[in] | LDB | LDB is INTEGER The leading dimension of the arrays B, BF, Z and T. LDB >= max(P,N). |
[out] | TAUB | TAUB is COMPLEX*16 array, dimension (min(P,N)) The scalar factors of the elementary reflectors, as returned by DGGRQF. |
[out] | WORK | WORK is COMPLEX*16 array, dimension (LWORK) |
[in] | LWORK | LWORK is INTEGER The dimension of the array WORK, LWORK >= max(N,M,P)**2. |
[out] | RWORK | RWORK is DOUBLE PRECISION array, dimension (max(N,M,P)) |
[out] | RESULT | RESULT is DOUBLE PRECISION array, dimension (4) The test ratios: RESULT(1) = norm( R - Q'*A ) / ( MAX(M,N)*norm(A)*ULP) RESULT(2) = norm( T*Z - Q'*B ) / (MAX(P,N)*norm(B)*ULP) RESULT(3) = norm( I - Q'*Q ) / ( M*ULP ) RESULT(4) = norm( I - Z'*Z ) / ( P*ULP ) |
Definition at line 174 of file zgqrts.f.