LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ zggqrf()

subroutine zggqrf ( integer  n,
integer  m,
integer  p,
complex*16, dimension( lda, * )  a,
integer  lda,
complex*16, dimension( * )  taua,
complex*16, dimension( ldb, * )  b,
integer  ldb,
complex*16, dimension( * )  taub,
complex*16, dimension( * )  work,
integer  lwork,
integer  info 
)

ZGGQRF

Download ZGGQRF + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 ZGGQRF computes a generalized QR factorization of an N-by-M matrix A
 and an N-by-P matrix B:

             A = Q*R,        B = Q*T*Z,

 where Q is an N-by-N unitary matrix, Z is a P-by-P unitary matrix,
 and R and T assume one of the forms:

 if N >= M,  R = ( R11 ) M  ,   or if N < M,  R = ( R11  R12 ) N,
                 (  0  ) N-M                         N   M-N
                    M

 where R11 is upper triangular, and

 if N <= P,  T = ( 0  T12 ) N,   or if N > P,  T = ( T11 ) N-P,
                  P-N  N                           ( T21 ) P
                                                      P

 where T12 or T21 is upper triangular.

 In particular, if B is square and nonsingular, the GQR factorization
 of A and B implicitly gives the QR factorization of inv(B)*A:

              inv(B)*A = Z**H * (inv(T)*R)

 where inv(B) denotes the inverse of the matrix B, and Z**H denotes the
 conjugate transpose of matrix Z.
Parameters
[in]N
          N is INTEGER
          The number of rows of the matrices A and B. N >= 0.
[in]M
          M is INTEGER
          The number of columns of the matrix A.  M >= 0.
[in]P
          P is INTEGER
          The number of columns of the matrix B.  P >= 0.
[in,out]A
          A is COMPLEX*16 array, dimension (LDA,M)
          On entry, the N-by-M matrix A.
          On exit, the elements on and above the diagonal of the array
          contain the min(N,M)-by-M upper trapezoidal matrix R (R is
          upper triangular if N >= M); the elements below the diagonal,
          with the array TAUA, represent the unitary matrix Q as a
          product of min(N,M) elementary reflectors (see Further
          Details).
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A. LDA >= max(1,N).
[out]TAUA
          TAUA is COMPLEX*16 array, dimension (min(N,M))
          The scalar factors of the elementary reflectors which
          represent the unitary matrix Q (see Further Details).
[in,out]B
          B is COMPLEX*16 array, dimension (LDB,P)
          On entry, the N-by-P matrix B.
          On exit, if N <= P, the upper triangle of the subarray
          B(1:N,P-N+1:P) contains the N-by-N upper triangular matrix T;
          if N > P, the elements on and above the (N-P)-th subdiagonal
          contain the N-by-P upper trapezoidal matrix T; the remaining
          elements, with the array TAUB, represent the unitary
          matrix Z as a product of elementary reflectors (see Further
          Details).
[in]LDB
          LDB is INTEGER
          The leading dimension of the array B. LDB >= max(1,N).
[out]TAUB
          TAUB is COMPLEX*16 array, dimension (min(N,P))
          The scalar factors of the elementary reflectors which
          represent the unitary matrix Z (see Further Details).
[out]WORK
          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
[in]LWORK
          LWORK is INTEGER
          The dimension of the array WORK. LWORK >= max(1,N,M,P).
          For optimum performance LWORK >= max(N,M,P)*max(NB1,NB2,NB3),
          where NB1 is the optimal blocksize for the QR factorization
          of an N-by-M matrix, NB2 is the optimal blocksize for the
          RQ factorization of an N-by-P matrix, and NB3 is the optimal
          blocksize for a call of ZUNMQR.

          If LWORK = -1, then a workspace query is assumed; the routine
          only calculates the optimal size of the WORK array, returns
          this value as the first entry of the WORK array, and no error
          message related to LWORK is issued by XERBLA.
[out]INFO
          INFO is INTEGER
           = 0:  successful exit
           < 0:  if INFO = -i, the i-th argument had an illegal value.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
  The matrix Q is represented as a product of elementary reflectors

     Q = H(1) H(2) . . . H(k), where k = min(n,m).

  Each H(i) has the form

     H(i) = I - taua * v * v**H

  where taua is a complex scalar, and v is a complex vector with
  v(1:i-1) = 0 and v(i) = 1; v(i+1:n) is stored on exit in A(i+1:n,i),
  and taua in TAUA(i).
  To form Q explicitly, use LAPACK subroutine ZUNGQR.
  To use Q to update another matrix, use LAPACK subroutine ZUNMQR.

  The matrix Z is represented as a product of elementary reflectors

     Z = H(1) H(2) . . . H(k), where k = min(n,p).

  Each H(i) has the form

     H(i) = I - taub * v * v**H

  where taub is a complex scalar, and v is a complex vector with
  v(p-k+i+1:p) = 0 and v(p-k+i) = 1; v(1:p-k+i-1) is stored on exit in
  B(n-k+i,1:p-k+i-1), and taub in TAUB(i).
  To form Z explicitly, use LAPACK subroutine ZUNGRQ.
  To use Z to update another matrix, use LAPACK subroutine ZUNMRQ.

Definition at line 213 of file zggqrf.f.

215*
216* -- LAPACK computational routine --
217* -- LAPACK is a software package provided by Univ. of Tennessee, --
218* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
219*
220* .. Scalar Arguments ..
221 INTEGER INFO, LDA, LDB, LWORK, M, N, P
222* ..
223* .. Array Arguments ..
224 COMPLEX*16 A( LDA, * ), B( LDB, * ), TAUA( * ), TAUB( * ),
225 $ WORK( * )
226* ..
227*
228* =====================================================================
229*
230* .. Local Scalars ..
231 LOGICAL LQUERY
232 INTEGER LOPT, LWKOPT, NB, NB1, NB2, NB3
233* ..
234* .. External Subroutines ..
235 EXTERNAL xerbla, zgeqrf, zgerqf, zunmqr
236* ..
237* .. External Functions ..
238 INTEGER ILAENV
239 EXTERNAL ilaenv
240* ..
241* .. Intrinsic Functions ..
242 INTRINSIC int, max, min
243* ..
244* .. Executable Statements ..
245*
246* Test the input parameters
247*
248 info = 0
249 nb1 = ilaenv( 1, 'ZGEQRF', ' ', n, m, -1, -1 )
250 nb2 = ilaenv( 1, 'ZGERQF', ' ', n, p, -1, -1 )
251 nb3 = ilaenv( 1, 'ZUNMQR', ' ', n, m, p, -1 )
252 nb = max( nb1, nb2, nb3 )
253 lwkopt = max( n, m, p )*nb
254 work( 1 ) = lwkopt
255 lquery = ( lwork.EQ.-1 )
256 IF( n.LT.0 ) THEN
257 info = -1
258 ELSE IF( m.LT.0 ) THEN
259 info = -2
260 ELSE IF( p.LT.0 ) THEN
261 info = -3
262 ELSE IF( lda.LT.max( 1, n ) ) THEN
263 info = -5
264 ELSE IF( ldb.LT.max( 1, n ) ) THEN
265 info = -8
266 ELSE IF( lwork.LT.max( 1, n, m, p ) .AND. .NOT.lquery ) THEN
267 info = -11
268 END IF
269 IF( info.NE.0 ) THEN
270 CALL xerbla( 'ZGGQRF', -info )
271 RETURN
272 ELSE IF( lquery ) THEN
273 RETURN
274 END IF
275*
276* QR factorization of N-by-M matrix A: A = Q*R
277*
278 CALL zgeqrf( n, m, a, lda, taua, work, lwork, info )
279 lopt = int( work( 1 ) )
280*
281* Update B := Q**H*B.
282*
283 CALL zunmqr( 'Left', 'Conjugate Transpose', n, p, min( n, m ), a,
284 $ lda, taua, b, ldb, work, lwork, info )
285 lopt = max( lopt, int( work( 1 ) ) )
286*
287* RQ factorization of N-by-P matrix B: B = T*Z.
288*
289 CALL zgerqf( n, p, b, ldb, taub, work, lwork, info )
290 work( 1 ) = max( lopt, int( work( 1 ) ) )
291*
292 RETURN
293*
294* End of ZGGQRF
295*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine zgeqrf(m, n, a, lda, tau, work, lwork, info)
ZGEQRF
Definition zgeqrf.f:146
subroutine zgerqf(m, n, a, lda, tau, work, lwork, info)
ZGERQF
Definition zgerqf.f:139
integer function ilaenv(ispec, name, opts, n1, n2, n3, n4)
ILAENV
Definition ilaenv.f:162
subroutine zunmqr(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
ZUNMQR
Definition zunmqr.f:167
Here is the call graph for this function:
Here is the caller graph for this function: