LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ zggqrf()

subroutine zggqrf ( integer n,
integer m,
integer p,
complex*16, dimension( lda, * ) a,
integer lda,
complex*16, dimension( * ) taua,
complex*16, dimension( ldb, * ) b,
integer ldb,
complex*16, dimension( * ) taub,
complex*16, dimension( * ) work,
integer lwork,
integer info )

ZGGQRF

Download ZGGQRF + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> ZGGQRF computes a generalized QR factorization of an N-by-M matrix A
!> and an N-by-P matrix B:
!>
!>             A = Q*R,        B = Q*T*Z,
!>
!> where Q is an N-by-N unitary matrix, Z is a P-by-P unitary matrix,
!> and R and T assume one of the forms:
!>
!> if N >= M,  R = ( R11 ) M  ,   or if N < M,  R = ( R11  R12 ) N,
!>                 (  0  ) N-M                         N   M-N
!>                    M
!>
!> where R11 is upper triangular, and
!>
!> if N <= P,  T = ( 0  T12 ) N,   or if N > P,  T = ( T11 ) N-P,
!>                  P-N  N                           ( T21 ) P
!>                                                      P
!>
!> where T12 or T21 is upper triangular.
!>
!> In particular, if B is square and nonsingular, the GQR factorization
!> of A and B implicitly gives the QR factorization of inv(B)*A:
!>
!>              inv(B)*A = Z**H * (inv(T)*R)
!>
!> where inv(B) denotes the inverse of the matrix B, and Z**H denotes the
!> conjugate transpose of matrix Z.
!> 
Parameters
[in]N
!>          N is INTEGER
!>          The number of rows of the matrices A and B. N >= 0.
!> 
[in]M
!>          M is INTEGER
!>          The number of columns of the matrix A.  M >= 0.
!> 
[in]P
!>          P is INTEGER
!>          The number of columns of the matrix B.  P >= 0.
!> 
[in,out]A
!>          A is COMPLEX*16 array, dimension (LDA,M)
!>          On entry, the N-by-M matrix A.
!>          On exit, the elements on and above the diagonal of the array
!>          contain the min(N,M)-by-M upper trapezoidal matrix R (R is
!>          upper triangular if N >= M); the elements below the diagonal,
!>          with the array TAUA, represent the unitary matrix Q as a
!>          product of min(N,M) elementary reflectors (see Further
!>          Details).
!> 
[in]LDA
!>          LDA is INTEGER
!>          The leading dimension of the array A. LDA >= max(1,N).
!> 
[out]TAUA
!>          TAUA is COMPLEX*16 array, dimension (min(N,M))
!>          The scalar factors of the elementary reflectors which
!>          represent the unitary matrix Q (see Further Details).
!> 
[in,out]B
!>          B is COMPLEX*16 array, dimension (LDB,P)
!>          On entry, the N-by-P matrix B.
!>          On exit, if N <= P, the upper triangle of the subarray
!>          B(1:N,P-N+1:P) contains the N-by-N upper triangular matrix T;
!>          if N > P, the elements on and above the (N-P)-th subdiagonal
!>          contain the N-by-P upper trapezoidal matrix T; the remaining
!>          elements, with the array TAUB, represent the unitary
!>          matrix Z as a product of elementary reflectors (see Further
!>          Details).
!> 
[in]LDB
!>          LDB is INTEGER
!>          The leading dimension of the array B. LDB >= max(1,N).
!> 
[out]TAUB
!>          TAUB is COMPLEX*16 array, dimension (min(N,P))
!>          The scalar factors of the elementary reflectors which
!>          represent the unitary matrix Z (see Further Details).
!> 
[out]WORK
!>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
!>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
!> 
[in]LWORK
!>          LWORK is INTEGER
!>          The dimension of the array WORK. LWORK >= max(1,N,M,P).
!>          For optimum performance LWORK >= max(N,M,P)*max(NB1,NB2,NB3),
!>          where NB1 is the optimal blocksize for the QR factorization
!>          of an N-by-M matrix, NB2 is the optimal blocksize for the
!>          RQ factorization of an N-by-P matrix, and NB3 is the optimal
!>          blocksize for a call of ZUNMQR.
!>
!>          If LWORK = -1, then a workspace query is assumed; the routine
!>          only calculates the optimal size of the WORK array, returns
!>          this value as the first entry of the WORK array, and no error
!>          message related to LWORK is issued by XERBLA.
!> 
[out]INFO
!>          INFO is INTEGER
!>           = 0:  successful exit
!>           < 0:  if INFO = -i, the i-th argument had an illegal value.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!>
!>  The matrix Q is represented as a product of elementary reflectors
!>
!>     Q = H(1) H(2) . . . H(k), where k = min(n,m).
!>
!>  Each H(i) has the form
!>
!>     H(i) = I - taua * v * v**H
!>
!>  where taua is a complex scalar, and v is a complex vector with
!>  v(1:i-1) = 0 and v(i) = 1; v(i+1:n) is stored on exit in A(i+1:n,i),
!>  and taua in TAUA(i).
!>  To form Q explicitly, use LAPACK subroutine ZUNGQR.
!>  To use Q to update another matrix, use LAPACK subroutine ZUNMQR.
!>
!>  The matrix Z is represented as a product of elementary reflectors
!>
!>     Z = H(1) H(2) . . . H(k), where k = min(n,p).
!>
!>  Each H(i) has the form
!>
!>     H(i) = I - taub * v * v**H
!>
!>  where taub is a complex scalar, and v is a complex vector with
!>  v(p-k+i+1:p) = 0 and v(p-k+i) = 1; v(1:p-k+i-1) is stored on exit in
!>  B(n-k+i,1:p-k+i-1), and taub in TAUB(i).
!>  To form Z explicitly, use LAPACK subroutine ZUNGRQ.
!>  To use Z to update another matrix, use LAPACK subroutine ZUNMRQ.
!> 

Definition at line 211 of file zggqrf.f.

213*
214* -- LAPACK computational routine --
215* -- LAPACK is a software package provided by Univ. of Tennessee, --
216* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
217*
218* .. Scalar Arguments ..
219 INTEGER INFO, LDA, LDB, LWORK, M, N, P
220* ..
221* .. Array Arguments ..
222 COMPLEX*16 A( LDA, * ), B( LDB, * ), TAUA( * ), TAUB( * ),
223 $ WORK( * )
224* ..
225*
226* =====================================================================
227*
228* .. Local Scalars ..
229 LOGICAL LQUERY
230 INTEGER LOPT, LWKOPT, NB, NB1, NB2, NB3
231* ..
232* .. External Subroutines ..
233 EXTERNAL xerbla, zgeqrf, zgerqf, zunmqr
234* ..
235* .. External Functions ..
236 INTEGER ILAENV
237 EXTERNAL ilaenv
238* ..
239* .. Intrinsic Functions ..
240 INTRINSIC int, max, min
241* ..
242* .. Executable Statements ..
243*
244* Test the input parameters
245*
246 info = 0
247 nb1 = ilaenv( 1, 'ZGEQRF', ' ', n, m, -1, -1 )
248 nb2 = ilaenv( 1, 'ZGERQF', ' ', n, p, -1, -1 )
249 nb3 = ilaenv( 1, 'ZUNMQR', ' ', n, m, p, -1 )
250 nb = max( nb1, nb2, nb3 )
251 lwkopt = max( 1, max( n, m, p )*nb )
252 work( 1 ) = lwkopt
253 lquery = ( lwork.EQ.-1 )
254 IF( n.LT.0 ) THEN
255 info = -1
256 ELSE IF( m.LT.0 ) THEN
257 info = -2
258 ELSE IF( p.LT.0 ) THEN
259 info = -3
260 ELSE IF( lda.LT.max( 1, n ) ) THEN
261 info = -5
262 ELSE IF( ldb.LT.max( 1, n ) ) THEN
263 info = -8
264 ELSE IF( lwork.LT.max( 1, n, m, p ) .AND. .NOT.lquery ) THEN
265 info = -11
266 END IF
267 IF( info.NE.0 ) THEN
268 CALL xerbla( 'ZGGQRF', -info )
269 RETURN
270 ELSE IF( lquery ) THEN
271 RETURN
272 END IF
273*
274* QR factorization of N-by-M matrix A: A = Q*R
275*
276 CALL zgeqrf( n, m, a, lda, taua, work, lwork, info )
277 lopt = int( work( 1 ) )
278*
279* Update B := Q**H*B.
280*
281 CALL zunmqr( 'Left', 'Conjugate Transpose', n, p, min( n, m ),
282 $ a,
283 $ lda, taua, b, ldb, work, lwork, info )
284 lopt = max( lopt, int( work( 1 ) ) )
285*
286* RQ factorization of N-by-P matrix B: B = T*Z.
287*
288 CALL zgerqf( n, p, b, ldb, taub, work, lwork, info )
289 work( 1 ) = max( lopt, int( work( 1 ) ) )
290*
291 RETURN
292*
293* End of ZGGQRF
294*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine zgeqrf(m, n, a, lda, tau, work, lwork, info)
ZGEQRF
Definition zgeqrf.f:144
subroutine zgerqf(m, n, a, lda, tau, work, lwork, info)
ZGERQF
Definition zgerqf.f:137
integer function ilaenv(ispec, name, opts, n1, n2, n3, n4)
ILAENV
Definition ilaenv.f:160
subroutine zunmqr(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
ZUNMQR
Definition zunmqr.f:165
Here is the call graph for this function:
Here is the caller graph for this function: