138 SUBROUTINE zgerqf( M, N, A, LDA, TAU, WORK, LWORK, INFO )
145 INTEGER INFO, LDA, LWORK, M, N
148 COMPLEX*16 A( LDA, * ), TAU( * ), WORK( * )
155 INTEGER I, IB, IINFO, IWS, K, KI, KK, LDWORK, LWKOPT,
156 $ MU, NB, NBMIN, NU, NX
173 lquery = ( lwork.EQ.-1 )
176 ELSE IF( n.LT.0 )
THEN
178 ELSE IF( lda.LT.max( 1, m ) )
THEN
187 nb = ilaenv( 1,
'ZGERQF',
' ', m, n, -1, -1 )
192 IF ( .NOT.lquery )
THEN
193 IF( lwork.LE.0 .OR. ( n.GT.0 .AND. lwork.LT.max( 1, m ) ) )
199 CALL xerbla(
'ZGERQF', -info )
201 ELSE IF( lquery )
THEN
214 IF( nb.GT.1 .AND. nb.LT.k )
THEN
218 nx = max( 0, ilaenv( 3,
'ZGERQF',
' ', m, n, -1, -1 ) )
225 IF( lwork.LT.iws )
THEN
231 nbmin = max( 2, ilaenv( 2,
'ZGERQF',
' ', m, n, -1,
237 IF( nb.GE.nbmin .AND. nb.LT.k .AND. nx.LT.k )
THEN
242 ki = ( ( k-nx-1 ) / nb )*nb
245 DO 10 i = k - kk + ki + 1, k - kk + 1, -nb
246 ib = min( k-i+1, nb )
251 CALL zgerq2( ib, n-k+i+ib-1, a( m-k+i, 1 ), lda, tau( i ),
253 IF( m-k+i.GT.1 )
THEN
258 CALL zlarft(
'Backward',
'Rowwise', n-k+i+ib-1, ib,
259 $ a( m-k+i, 1 ), lda, tau( i ), work, ldwork )
263 CALL zlarfb(
'Right',
'No transpose',
'Backward',
264 $
'Rowwise', m-k+i-1, n-k+i+ib-1, ib,
265 $ a( m-k+i, 1 ), lda, work, ldwork, a, lda,
266 $ work( ib+1 ), ldwork )
269 mu = m - k + i + nb - 1
270 nu = n - k + i + nb - 1
278 IF( mu.GT.0 .AND. nu.GT.0 )
279 $
CALL zgerq2( mu, nu, a, lda, tau, work, iinfo )
subroutine xerbla(SRNAME, INFO)
XERBLA
subroutine zgerqf(M, N, A, LDA, TAU, WORK, LWORK, INFO)
ZGERQF
subroutine zgerq2(M, N, A, LDA, TAU, WORK, INFO)
ZGERQ2 computes the RQ factorization of a general rectangular matrix using an unblocked algorithm.
subroutine zlarfb(SIDE, TRANS, DIRECT, STOREV, M, N, K, V, LDV, T, LDT, C, LDC, WORK, LDWORK)
ZLARFB applies a block reflector or its conjugate-transpose to a general rectangular matrix.
subroutine zlarft(DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT)
ZLARFT forms the triangular factor T of a block reflector H = I - vtvH