LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ zlaqz0()

recursive subroutine zlaqz0 ( character, intent(in)  wants,
character, intent(in)  wantq,
character, intent(in)  wantz,
integer, intent(in)  n,
integer, intent(in)  ilo,
integer, intent(in)  ihi,
complex*16, dimension( lda, * ), intent(inout)  a,
integer, intent(in)  lda,
complex*16, dimension( ldb, * ), intent(inout)  b,
integer, intent(in)  ldb,
complex*16, dimension( * ), intent(inout)  alpha,
complex*16, dimension( * ), intent(inout)  beta,
complex*16, dimension( ldq, * ), intent(inout)  q,
integer, intent(in)  ldq,
complex*16, dimension( ldz, * ), intent(inout)  z,
integer, intent(in)  ldz,
complex*16, dimension( * ), intent(inout)  work,
integer, intent(in)  lwork,
double precision, dimension( * ), intent(out)  rwork,
integer, intent(in)  rec,
integer, intent(out)  info 
)

ZLAQZ0

Download ZLAQZ0 + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 ZLAQZ0 computes the eigenvalues of a real matrix pair (H,T),
 where H is an upper Hessenberg matrix and T is upper triangular,
 using the double-shift QZ method.
 Matrix pairs of this type are produced by the reduction to
 generalized upper Hessenberg form of a real matrix pair (A,B):

    A = Q1*H*Z1**H,  B = Q1*T*Z1**H,

 as computed by ZGGHRD.

 If JOB='S', then the Hessenberg-triangular pair (H,T) is
 also reduced to generalized Schur form,

    H = Q*S*Z**H,  T = Q*P*Z**H,

 where Q and Z are unitary matrices, P and S are an upper triangular
 matrices.

 Optionally, the unitary matrix Q from the generalized Schur
 factorization may be postmultiplied into an input matrix Q1, and the
 unitary matrix Z may be postmultiplied into an input matrix Z1.
 If Q1 and Z1 are the unitary matrices from ZGGHRD that reduced
 the matrix pair (A,B) to generalized upper Hessenberg form, then the
 output matrices Q1*Q and Z1*Z are the unitary factors from the
 generalized Schur factorization of (A,B):

    A = (Q1*Q)*S*(Z1*Z)**H,  B = (Q1*Q)*P*(Z1*Z)**H.

 To avoid overflow, eigenvalues of the matrix pair (H,T) (equivalently,
 of (A,B)) are computed as a pair of values (alpha,beta), where alpha is
 complex and beta real.
 If beta is nonzero, lambda = alpha / beta is an eigenvalue of the
 generalized nonsymmetric eigenvalue problem (GNEP)
    A*x = lambda*B*x
 and if alpha is nonzero, mu = beta / alpha is an eigenvalue of the
 alternate form of the GNEP
    mu*A*y = B*y.
 Eigenvalues can be read directly from the generalized Schur
 form:
   alpha = S(i,i), beta = P(i,i).

 Ref: C.B. Moler & G.W. Stewart, "An Algorithm for Generalized Matrix
      Eigenvalue Problems", SIAM J. Numer. Anal., 10(1973),
      pp. 241--256.

 Ref: B. Kagstrom, D. Kressner, "Multishift Variants of the QZ
      Algorithm with Aggressive Early Deflation", SIAM J. Numer.
      Anal., 29(2006), pp. 199--227.

 Ref: T. Steel, D. Camps, K. Meerbergen, R. Vandebril "A multishift,
      multipole rational QZ method with aggressive early deflation"
Parameters
[in]WANTS
          WANTS is CHARACTER*1
          = 'E': Compute eigenvalues only;
          = 'S': Compute eigenvalues and the Schur form.
[in]WANTQ
          WANTQ is CHARACTER*1
          = 'N': Left Schur vectors (Q) are not computed;
          = 'I': Q is initialized to the unit matrix and the matrix Q
                 of left Schur vectors of (A,B) is returned;
          = 'V': Q must contain an unitary matrix Q1 on entry and
                 the product Q1*Q is returned.
[in]WANTZ
          WANTZ is CHARACTER*1
          = 'N': Right Schur vectors (Z) are not computed;
          = 'I': Z is initialized to the unit matrix and the matrix Z
                 of right Schur vectors of (A,B) is returned;
          = 'V': Z must contain an unitary matrix Z1 on entry and
                 the product Z1*Z is returned.
[in]N
          N is INTEGER
          The order of the matrices A, B, Q, and Z.  N >= 0.
[in]ILO
          ILO is INTEGER
[in]IHI
          IHI is INTEGER
          ILO and IHI mark the rows and columns of A which are in
          Hessenberg form.  It is assumed that A is already upper
          triangular in rows and columns 1:ILO-1 and IHI+1:N.
          If N > 0, 1 <= ILO <= IHI <= N; if N = 0, ILO=1 and IHI=0.
[in,out]A
          A is COMPLEX*16 array, dimension (LDA, N)
          On entry, the N-by-N upper Hessenberg matrix A.
          On exit, if JOB = 'S', A contains the upper triangular
          matrix S from the generalized Schur factorization.
          If JOB = 'E', the diagonal blocks of A match those of S, but
          the rest of A is unspecified.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max( 1, N ).
[in,out]B
          B is COMPLEX*16 array, dimension (LDB, N)
          On entry, the N-by-N upper triangular matrix B.
          On exit, if JOB = 'S', B contains the upper triangular
          matrix P from the generalized Schur factorization;
          If JOB = 'E', the diagonal blocks of B match those of P, but
          the rest of B is unspecified.
[in]LDB
          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max( 1, N ).
[out]ALPHA
          ALPHA is COMPLEX*16 array, dimension (N)
          Each scalar alpha defining an eigenvalue
          of GNEP.
[out]BETA
          BETA is COMPLEX*16 array, dimension (N)
          The scalars beta that define the eigenvalues of GNEP.
          Together, the quantities alpha = ALPHA(j) and
          beta = BETA(j) represent the j-th eigenvalue of the matrix
          pair (A,B), in one of the forms lambda = alpha/beta or
          mu = beta/alpha.  Since either lambda or mu may overflow,
          they should not, in general, be computed.
[in,out]Q
          Q is COMPLEX*16 array, dimension (LDQ, N)
          On entry, if COMPQ = 'V', the unitary matrix Q1 used in
          the reduction of (A,B) to generalized Hessenberg form.
          On exit, if COMPQ = 'I', the unitary matrix of left Schur
          vectors of (A,B), and if COMPQ = 'V', the unitary matrix
          of left Schur vectors of (A,B).
          Not referenced if COMPQ = 'N'.
[in]LDQ
          LDQ is INTEGER
          The leading dimension of the array Q.  LDQ >= 1.
          If COMPQ='V' or 'I', then LDQ >= N.
[in,out]Z
          Z is COMPLEX*16 array, dimension (LDZ, N)
          On entry, if COMPZ = 'V', the unitary matrix Z1 used in
          the reduction of (A,B) to generalized Hessenberg form.
          On exit, if COMPZ = 'I', the unitary matrix of
          right Schur vectors of (H,T), and if COMPZ = 'V', the
          unitary matrix of right Schur vectors of (A,B).
          Not referenced if COMPZ = 'N'.
[in]LDZ
          LDZ is INTEGER
          The leading dimension of the array Z.  LDZ >= 1.
          If COMPZ='V' or 'I', then LDZ >= N.
[out]WORK
          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
          On exit, if INFO >= 0, WORK(1) returns the optimal LWORK.
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension (N)
[in]LWORK
          LWORK is INTEGER
          The dimension of the array WORK.  LWORK >= max(1,N).

          If LWORK = -1, then a workspace query is assumed; the routine
          only calculates the optimal size of the WORK array, returns
          this value as the first entry of the WORK array, and no error
          message related to LWORK is issued by XERBLA.
[in]REC
          REC is INTEGER
             REC indicates the current recursion level. Should be set
             to 0 on first call.
[out]INFO
          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -i, the i-th argument had an illegal value
          = 1,...,N: the QZ iteration did not converge.  (A,B) is not
                     in Schur form, but ALPHA(i) and
                     BETA(i), i=INFO+1,...,N should be correct.
Author
Thijs Steel, KU Leuven
Date
May 2020

Definition at line 280 of file zlaqz0.f.

284 IMPLICIT NONE
285
286* Arguments
287 CHARACTER, INTENT( IN ) :: WANTS, WANTQ, WANTZ
288 INTEGER, INTENT( IN ) :: N, ILO, IHI, LDA, LDB, LDQ, LDZ, LWORK,
289 $ REC
290 INTEGER, INTENT( OUT ) :: INFO
291 COMPLEX*16, INTENT( INOUT ) :: A( LDA, * ), B( LDB, * ), Q( LDQ,
292 $ * ), Z( LDZ, * ), ALPHA( * ), BETA( * ), WORK( * )
293 DOUBLE PRECISION, INTENT( OUT ) :: RWORK( * )
294
295* Parameters
296 COMPLEX*16 CZERO, CONE
297 parameter( czero = ( 0.0d+0, 0.0d+0 ), cone = ( 1.0d+0,
298 $ 0.0d+0 ) )
299 DOUBLE PRECISION :: ZERO, ONE, HALF
300 parameter( zero = 0.0d0, one = 1.0d0, half = 0.5d0 )
301
302* Local scalars
303 DOUBLE PRECISION :: SMLNUM, ULP, SAFMIN, SAFMAX, C1, TEMPR,
304 $ BNORM, BTOL
305 COMPLEX*16 :: ESHIFT, S1, TEMP
306 INTEGER :: ISTART, ISTOP, IITER, MAXIT, ISTART2, K, LD, NSHIFTS,
307 $ NBLOCK, NW, NMIN, NIBBLE, N_UNDEFLATED, N_DEFLATED,
308 $ NS, SWEEP_INFO, SHIFTPOS, LWORKREQ, K2, ISTARTM,
309 $ ISTOPM, IWANTS, IWANTQ, IWANTZ, NORM_INFO, AED_INFO,
310 $ NWR, NBR, NSR, ITEMP1, ITEMP2, RCOST
311 LOGICAL :: ILSCHUR, ILQ, ILZ
312 CHARACTER :: JBCMPZ*3
313
314* External Functions
315 EXTERNAL :: xerbla, zhgeqz, zlaqz2, zlaqz3, zlaset,
316 $ zlartg, zrot
317 DOUBLE PRECISION, EXTERNAL :: DLAMCH, ZLANHS
318 LOGICAL, EXTERNAL :: LSAME
319 INTEGER, EXTERNAL :: ILAENV
320
321*
322* Decode wantS,wantQ,wantZ
323*
324 IF( lsame( wants, 'E' ) ) THEN
325 ilschur = .false.
326 iwants = 1
327 ELSE IF( lsame( wants, 'S' ) ) THEN
328 ilschur = .true.
329 iwants = 2
330 ELSE
331 iwants = 0
332 END IF
333
334 IF( lsame( wantq, 'N' ) ) THEN
335 ilq = .false.
336 iwantq = 1
337 ELSE IF( lsame( wantq, 'V' ) ) THEN
338 ilq = .true.
339 iwantq = 2
340 ELSE IF( lsame( wantq, 'I' ) ) THEN
341 ilq = .true.
342 iwantq = 3
343 ELSE
344 iwantq = 0
345 END IF
346
347 IF( lsame( wantz, 'N' ) ) THEN
348 ilz = .false.
349 iwantz = 1
350 ELSE IF( lsame( wantz, 'V' ) ) THEN
351 ilz = .true.
352 iwantz = 2
353 ELSE IF( lsame( wantz, 'I' ) ) THEN
354 ilz = .true.
355 iwantz = 3
356 ELSE
357 iwantz = 0
358 END IF
359*
360* Check Argument Values
361*
362 info = 0
363 IF( iwants.EQ.0 ) THEN
364 info = -1
365 ELSE IF( iwantq.EQ.0 ) THEN
366 info = -2
367 ELSE IF( iwantz.EQ.0 ) THEN
368 info = -3
369 ELSE IF( n.LT.0 ) THEN
370 info = -4
371 ELSE IF( ilo.LT.1 ) THEN
372 info = -5
373 ELSE IF( ihi.GT.n .OR. ihi.LT.ilo-1 ) THEN
374 info = -6
375 ELSE IF( lda.LT.n ) THEN
376 info = -8
377 ELSE IF( ldb.LT.n ) THEN
378 info = -10
379 ELSE IF( ldq.LT.1 .OR. ( ilq .AND. ldq.LT.n ) ) THEN
380 info = -15
381 ELSE IF( ldz.LT.1 .OR. ( ilz .AND. ldz.LT.n ) ) THEN
382 info = -17
383 END IF
384 IF( info.NE.0 ) THEN
385 CALL xerbla( 'ZLAQZ0', -info )
386 RETURN
387 END IF
388
389*
390* Quick return if possible
391*
392 IF( n.LE.0 ) THEN
393 work( 1 ) = dble( 1 )
394 RETURN
395 END IF
396
397*
398* Get the parameters
399*
400 jbcmpz( 1:1 ) = wants
401 jbcmpz( 2:2 ) = wantq
402 jbcmpz( 3:3 ) = wantz
403
404 nmin = ilaenv( 12, 'ZLAQZ0', jbcmpz, n, ilo, ihi, lwork )
405
406 nwr = ilaenv( 13, 'ZLAQZ0', jbcmpz, n, ilo, ihi, lwork )
407 nwr = max( 2, nwr )
408 nwr = min( ihi-ilo+1, ( n-1 ) / 3, nwr )
409
410 nibble = ilaenv( 14, 'ZLAQZ0', jbcmpz, n, ilo, ihi, lwork )
411
412 nsr = ilaenv( 15, 'ZLAQZ0', jbcmpz, n, ilo, ihi, lwork )
413 nsr = min( nsr, ( n+6 ) / 9, ihi-ilo )
414 nsr = max( 2, nsr-mod( nsr, 2 ) )
415
416 rcost = ilaenv( 17, 'ZLAQZ0', jbcmpz, n, ilo, ihi, lwork )
417 itemp1 = int( nsr/sqrt( 1+2*nsr/( dble( rcost )/100*n ) ) )
418 itemp1 = ( ( itemp1-1 )/4 )*4+4
419 nbr = nsr+itemp1
420
421 IF( n .LT. nmin .OR. rec .GE. 2 ) THEN
422 CALL zhgeqz( wants, wantq, wantz, n, ilo, ihi, a, lda, b, ldb,
423 $ alpha, beta, q, ldq, z, ldz, work, lwork, rwork,
424 $ info )
425 RETURN
426 END IF
427
428*
429* Find out required workspace
430*
431
432* Workspace query to ZLAQZ2
433 nw = max( nwr, nmin )
434 CALL zlaqz2( ilschur, ilq, ilz, n, ilo, ihi, nw, a, lda, b, ldb,
435 $ q, ldq, z, ldz, n_undeflated, n_deflated, alpha,
436 $ beta, work, nw, work, nw, work, -1, rwork, rec,
437 $ aed_info )
438 itemp1 = int( work( 1 ) )
439* Workspace query to ZLAQZ3
440 CALL zlaqz3( ilschur, ilq, ilz, n, ilo, ihi, nsr, nbr, alpha,
441 $ beta, a, lda, b, ldb, q, ldq, z, ldz, work, nbr,
442 $ work, nbr, work, -1, sweep_info )
443 itemp2 = int( work( 1 ) )
444
445 lworkreq = max( itemp1+2*nw**2, itemp2+2*nbr**2 )
446 IF ( lwork .EQ.-1 ) THEN
447 work( 1 ) = dble( lworkreq )
448 RETURN
449 ELSE IF ( lwork .LT. lworkreq ) THEN
450 info = -19
451 END IF
452 IF( info.NE.0 ) THEN
453 CALL xerbla( 'ZLAQZ0', info )
454 RETURN
455 END IF
456*
457* Initialize Q and Z
458*
459 IF( iwantq.EQ.3 ) CALL zlaset( 'FULL', n, n, czero, cone, q,
460 $ ldq )
461 IF( iwantz.EQ.3 ) CALL zlaset( 'FULL', n, n, czero, cone, z,
462 $ ldz )
463
464* Get machine constants
465 safmin = dlamch( 'SAFE MINIMUM' )
466 safmax = one/safmin
467 ulp = dlamch( 'PRECISION' )
468 smlnum = safmin*( dble( n )/ulp )
469
470 bnorm = zlanhs( 'F', ihi-ilo+1, b( ilo, ilo ), ldb, rwork )
471 btol = max( safmin, ulp*bnorm )
472
473 istart = ilo
474 istop = ihi
475 maxit = 30*( ihi-ilo+1 )
476 ld = 0
477
478 DO iiter = 1, maxit
479 IF( iiter .GE. maxit ) THEN
480 info = istop+1
481 GOTO 80
482 END IF
483 IF ( istart+1 .GE. istop ) THEN
484 istop = istart
485 EXIT
486 END IF
487
488* Check deflations at the end
489 IF ( abs( a( istop, istop-1 ) ) .LE. max( smlnum,
490 $ ulp*( abs( a( istop, istop ) )+abs( a( istop-1,
491 $ istop-1 ) ) ) ) ) THEN
492 a( istop, istop-1 ) = czero
493 istop = istop-1
494 ld = 0
495 eshift = czero
496 END IF
497* Check deflations at the start
498 IF ( abs( a( istart+1, istart ) ) .LE. max( smlnum,
499 $ ulp*( abs( a( istart, istart ) )+abs( a( istart+1,
500 $ istart+1 ) ) ) ) ) THEN
501 a( istart+1, istart ) = czero
502 istart = istart+1
503 ld = 0
504 eshift = czero
505 END IF
506
507 IF ( istart+1 .GE. istop ) THEN
508 EXIT
509 END IF
510
511* Check interior deflations
512 istart2 = istart
513 DO k = istop, istart+1, -1
514 IF ( abs( a( k, k-1 ) ) .LE. max( smlnum, ulp*( abs( a( k,
515 $ k ) )+abs( a( k-1, k-1 ) ) ) ) ) THEN
516 a( k, k-1 ) = czero
517 istart2 = k
518 EXIT
519 END IF
520 END DO
521
522* Get range to apply rotations to
523 IF ( ilschur ) THEN
524 istartm = 1
525 istopm = n
526 ELSE
527 istartm = istart2
528 istopm = istop
529 END IF
530
531* Check infinite eigenvalues, this is done without blocking so might
532* slow down the method when many infinite eigenvalues are present
533 k = istop
534 DO WHILE ( k.GE.istart2 )
535
536 IF( abs( b( k, k ) ) .LT. btol ) THEN
537* A diagonal element of B is negligible, move it
538* to the top and deflate it
539
540 DO k2 = k, istart2+1, -1
541 CALL zlartg( b( k2-1, k2 ), b( k2-1, k2-1 ), c1, s1,
542 $ temp )
543 b( k2-1, k2 ) = temp
544 b( k2-1, k2-1 ) = czero
545
546 CALL zrot( k2-2-istartm+1, b( istartm, k2 ), 1,
547 $ b( istartm, k2-1 ), 1, c1, s1 )
548 CALL zrot( min( k2+1, istop )-istartm+1, a( istartm,
549 $ k2 ), 1, a( istartm, k2-1 ), 1, c1, s1 )
550 IF ( ilz ) THEN
551 CALL zrot( n, z( 1, k2 ), 1, z( 1, k2-1 ), 1, c1,
552 $ s1 )
553 END IF
554
555 IF( k2.LT.istop ) THEN
556 CALL zlartg( a( k2, k2-1 ), a( k2+1, k2-1 ), c1,
557 $ s1, temp )
558 a( k2, k2-1 ) = temp
559 a( k2+1, k2-1 ) = czero
560
561 CALL zrot( istopm-k2+1, a( k2, k2 ), lda, a( k2+1,
562 $ k2 ), lda, c1, s1 )
563 CALL zrot( istopm-k2+1, b( k2, k2 ), ldb, b( k2+1,
564 $ k2 ), ldb, c1, s1 )
565 IF( ilq ) THEN
566 CALL zrot( n, q( 1, k2 ), 1, q( 1, k2+1 ), 1,
567 $ c1, dconjg( s1 ) )
568 END IF
569 END IF
570
571 END DO
572
573 IF( istart2.LT.istop )THEN
574 CALL zlartg( a( istart2, istart2 ), a( istart2+1,
575 $ istart2 ), c1, s1, temp )
576 a( istart2, istart2 ) = temp
577 a( istart2+1, istart2 ) = czero
578
579 CALL zrot( istopm-( istart2+1 )+1, a( istart2,
580 $ istart2+1 ), lda, a( istart2+1,
581 $ istart2+1 ), lda, c1, s1 )
582 CALL zrot( istopm-( istart2+1 )+1, b( istart2,
583 $ istart2+1 ), ldb, b( istart2+1,
584 $ istart2+1 ), ldb, c1, s1 )
585 IF( ilq ) THEN
586 CALL zrot( n, q( 1, istart2 ), 1, q( 1,
587 $ istart2+1 ), 1, c1, dconjg( s1 ) )
588 END IF
589 END IF
590
591 istart2 = istart2+1
592
593 END IF
594 k = k-1
595 END DO
596
597* istart2 now points to the top of the bottom right
598* unreduced Hessenberg block
599 IF ( istart2 .GE. istop ) THEN
600 istop = istart2-1
601 ld = 0
602 eshift = czero
603 cycle
604 END IF
605
606 nw = nwr
607 nshifts = nsr
608 nblock = nbr
609
610 IF ( istop-istart2+1 .LT. nmin ) THEN
611* Setting nw to the size of the subblock will make AED deflate
612* all the eigenvalues. This is slightly more efficient than just
613* using qz_small because the off diagonal part gets updated via BLAS.
614 IF ( istop-istart+1 .LT. nmin ) THEN
615 nw = istop-istart+1
616 istart2 = istart
617 ELSE
618 nw = istop-istart2+1
619 END IF
620 END IF
621
622*
623* Time for AED
624*
625 CALL zlaqz2( ilschur, ilq, ilz, n, istart2, istop, nw, a, lda,
626 $ b, ldb, q, ldq, z, ldz, n_undeflated, n_deflated,
627 $ alpha, beta, work, nw, work( nw**2+1 ), nw,
628 $ work( 2*nw**2+1 ), lwork-2*nw**2, rwork, rec,
629 $ aed_info )
630
631 IF ( n_deflated > 0 ) THEN
632 istop = istop-n_deflated
633 ld = 0
634 eshift = czero
635 END IF
636
637 IF ( 100*n_deflated > nibble*( n_deflated+n_undeflated ) .OR.
638 $ istop-istart2+1 .LT. nmin ) THEN
639* AED has uncovered many eigenvalues. Skip a QZ sweep and run
640* AED again.
641 cycle
642 END IF
643
644 ld = ld+1
645
646 ns = min( nshifts, istop-istart2 )
647 ns = min( ns, n_undeflated )
648 shiftpos = istop-n_undeflated+1
649
650 IF ( mod( ld, 6 ) .EQ. 0 ) THEN
651*
652* Exceptional shift. Chosen for no particularly good reason.
653*
654 IF( ( dble( maxit )*safmin )*abs( a( istop,
655 $ istop-1 ) ).LT.abs( a( istop-1, istop-1 ) ) ) THEN
656 eshift = a( istop, istop-1 )/b( istop-1, istop-1 )
657 ELSE
658 eshift = eshift+cone/( safmin*dble( maxit ) )
659 END IF
660 alpha( shiftpos ) = cone
661 beta( shiftpos ) = eshift
662 ns = 1
663 END IF
664
665*
666* Time for a QZ sweep
667*
668 CALL zlaqz3( ilschur, ilq, ilz, n, istart2, istop, ns, nblock,
669 $ alpha( shiftpos ), beta( shiftpos ), a, lda, b,
670 $ ldb, q, ldq, z, ldz, work, nblock, work( nblock**
671 $ 2+1 ), nblock, work( 2*nblock**2+1 ),
672 $ lwork-2*nblock**2, sweep_info )
673
674 END DO
675
676*
677* Call ZHGEQZ to normalize the eigenvalue blocks and set the eigenvalues
678* If all the eigenvalues have been found, ZHGEQZ will not do any iterations
679* and only normalize the blocks. In case of a rare convergence failure,
680* the single shift might perform better.
681*
682 80 CALL zhgeqz( wants, wantq, wantz, n, ilo, ihi, a, lda, b, ldb,
683 $ alpha, beta, q, ldq, z, ldz, work, lwork, rwork,
684 $ norm_info )
685
686 info = norm_info
687
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine zhgeqz(job, compq, compz, n, ilo, ihi, h, ldh, t, ldt, alpha, beta, q, ldq, z, ldz, work, lwork, rwork, info)
ZHGEQZ
Definition zhgeqz.f:284
integer function ilaenv(ispec, name, opts, n1, n2, n3, n4)
ILAENV
Definition ilaenv.f:162
double precision function dlamch(cmach)
DLAMCH
Definition dlamch.f:69
double precision function zlanhs(norm, n, a, lda, work)
ZLANHS returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition zlanhs.f:109
recursive subroutine zlaqz2(ilschur, ilq, ilz, n, ilo, ihi, nw, a, lda, b, ldb, q, ldq, z, ldz, ns, nd, alpha, beta, qc, ldqc, zc, ldzc, work, lwork, rwork, rec, info)
ZLAQZ2
Definition zlaqz2.f:234
subroutine zlaqz3(ilschur, ilq, ilz, n, ilo, ihi, nshifts, nblock_desired, alpha, beta, a, lda, b, ldb, q, ldq, z, ldz, qc, ldqc, zc, ldzc, work, lwork, info)
ZLAQZ3
Definition zlaqz3.f:208
subroutine zlartg(f, g, c, s, r)
ZLARTG generates a plane rotation with real cosine and complex sine.
Definition zlartg.f90:116
subroutine zlaset(uplo, m, n, alpha, beta, a, lda)
ZLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition zlaset.f:106
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
subroutine zrot(n, cx, incx, cy, incy, c, s)
ZROT applies a plane rotation with real cosine and complex sine to a pair of complex vectors.
Definition zrot.f:103
Here is the call graph for this function:
Here is the caller graph for this function: