LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
|
subroutine zrot | ( | integer | n, |
complex*16, dimension( * ) | cx, | ||
integer | incx, | ||
complex*16, dimension( * ) | cy, | ||
integer | incy, | ||
double precision | c, | ||
complex*16 | s ) |
ZROT applies a plane rotation with real cosine and complex sine to a pair of complex vectors.
Download ZROT + dependencies [TGZ] [ZIP] [TXT]
!> !> ZROT applies a plane rotation, where the cos (C) is real and the !> sin (S) is complex, and the vectors CX and CY are complex. !>
[in] | N | !> N is INTEGER !> The number of elements in the vectors CX and CY. !> |
[in,out] | CX | !> CX is COMPLEX*16 array, dimension (N) !> On input, the vector X. !> On output, CX is overwritten with C*X + S*Y. !> |
[in] | INCX | !> INCX is INTEGER !> The increment between successive values of CX. INCX <> 0. !> |
[in,out] | CY | !> CY is COMPLEX*16 array, dimension (N) !> On input, the vector Y. !> On output, CY is overwritten with -CONJG(S)*X + C*Y. !> |
[in] | INCY | !> INCY is INTEGER !> The increment between successive values of CY. INCX <> 0. !> |
[in] | C | !> C is DOUBLE PRECISION !> |
[in] | S | !> S is COMPLEX*16 !> C and S define a rotation !> [ C S ] !> [ -conjg(S) C ] !> where C*C + S*CONJG(S) = 1.0. !> |
Definition at line 100 of file zrot.f.