LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Modules Pages

◆ zlanhs()

double precision function zlanhs ( character norm,
integer n,
complex*16, dimension( lda, * ) a,
integer lda,
double precision, dimension( * ) work )

ZLANHS returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of an upper Hessenberg matrix.

Download ZLANHS + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!> !> ZLANHS returns the value of the one norm, or the Frobenius norm, or !> the infinity norm, or the element of largest absolute value of a !> Hessenberg matrix A. !>
Returns
ZLANHS
!> !> ZLANHS = ( max(abs(A(i,j))), NORM = 'M' or 'm' !> ( !> ( norm1(A), NORM = '1', 'O' or 'o' !> ( !> ( normI(A), NORM = 'I' or 'i' !> ( !> ( normF(A), NORM = 'F', 'f', 'E' or 'e' !> !> where norm1 denotes the one norm of a matrix (maximum column sum), !> normI denotes the infinity norm of a matrix (maximum row sum) and !> normF denotes the Frobenius norm of a matrix (square root of sum of !> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. !>
Parameters
[in]NORM
!> NORM is CHARACTER*1 !> Specifies the value to be returned in ZLANHS as described !> above. !>
[in]N
!> N is INTEGER !> The order of the matrix A. N >= 0. When N = 0, ZLANHS is !> set to zero. !>
[in]A
!> A is COMPLEX*16 array, dimension (LDA,N) !> The n by n upper Hessenberg matrix A; the part of A below the !> first sub-diagonal is not referenced. !>
[in]LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(N,1). !>
[out]WORK
!> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)), !> where LWORK >= N when NORM = 'I'; otherwise, WORK is not !> referenced. !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 106 of file zlanhs.f.

107*
108* -- LAPACK auxiliary routine --
109* -- LAPACK is a software package provided by Univ. of Tennessee, --
110* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
111*
112* .. Scalar Arguments ..
113 CHARACTER NORM
114 INTEGER LDA, N
115* ..
116* .. Array Arguments ..
117 DOUBLE PRECISION WORK( * )
118 COMPLEX*16 A( LDA, * )
119* ..
120*
121* =====================================================================
122*
123* .. Parameters ..
124 DOUBLE PRECISION ONE, ZERO
125 parameter( one = 1.0d+0, zero = 0.0d+0 )
126* ..
127* .. Local Scalars ..
128 INTEGER I, J
129 DOUBLE PRECISION SCALE, SUM, VALUE
130* ..
131* .. External Functions ..
132 LOGICAL LSAME, DISNAN
133 EXTERNAL lsame, disnan
134* ..
135* .. External Subroutines ..
136 EXTERNAL zlassq
137* ..
138* .. Intrinsic Functions ..
139 INTRINSIC abs, min, sqrt
140* ..
141* .. Executable Statements ..
142*
143 IF( n.EQ.0 ) THEN
144 VALUE = zero
145 ELSE IF( lsame( norm, 'M' ) ) THEN
146*
147* Find max(abs(A(i,j))).
148*
149 VALUE = zero
150 DO 20 j = 1, n
151 DO 10 i = 1, min( n, j+1 )
152 sum = abs( a( i, j ) )
153 IF( VALUE .LT. sum .OR. disnan( sum ) ) VALUE = sum
154 10 CONTINUE
155 20 CONTINUE
156 ELSE IF( ( lsame( norm, 'O' ) ) .OR. ( norm.EQ.'1' ) ) THEN
157*
158* Find norm1(A).
159*
160 VALUE = zero
161 DO 40 j = 1, n
162 sum = zero
163 DO 30 i = 1, min( n, j+1 )
164 sum = sum + abs( a( i, j ) )
165 30 CONTINUE
166 IF( VALUE .LT. sum .OR. disnan( sum ) ) VALUE = sum
167 40 CONTINUE
168 ELSE IF( lsame( norm, 'I' ) ) THEN
169*
170* Find normI(A).
171*
172 DO 50 i = 1, n
173 work( i ) = zero
174 50 CONTINUE
175 DO 70 j = 1, n
176 DO 60 i = 1, min( n, j+1 )
177 work( i ) = work( i ) + abs( a( i, j ) )
178 60 CONTINUE
179 70 CONTINUE
180 VALUE = zero
181 DO 80 i = 1, n
182 sum = work( i )
183 IF( VALUE .LT. sum .OR. disnan( sum ) ) VALUE = sum
184 80 CONTINUE
185 ELSE IF( ( lsame( norm, 'F' ) ) .OR.
186 $ ( lsame( norm, 'E' ) ) ) THEN
187*
188* Find normF(A).
189*
190 scale = zero
191 sum = one
192 DO 90 j = 1, n
193 CALL zlassq( min( n, j+1 ), a( 1, j ), 1, scale, sum )
194 90 CONTINUE
195 VALUE = scale*sqrt( sum )
196 END IF
197*
198 zlanhs = VALUE
199 RETURN
200*
201* End of ZLANHS
202*
logical function disnan(din)
DISNAN tests input for NaN.
Definition disnan.f:57
double precision function zlanhs(norm, n, a, lda, work)
ZLANHS returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition zlanhs.f:107
subroutine zlassq(n, x, incx, scale, sumsq)
ZLASSQ updates a sum of squares represented in scaled form.
Definition zlassq.f90:122
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
Here is the call graph for this function:
Here is the caller graph for this function: