LAPACK 3.11.0 LAPACK: Linear Algebra PACKage
Searching...
No Matches
crqt03.f
Go to the documentation of this file.
1*> \brief \b CRQT03
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8* Definition:
9* ===========
10*
11* SUBROUTINE CRQT03( M, N, K, AF, C, CC, Q, LDA, TAU, WORK, LWORK,
12* RWORK, RESULT )
13*
14* .. Scalar Arguments ..
15* INTEGER K, LDA, LWORK, M, N
16* ..
17* .. Array Arguments ..
18* REAL RESULT( * ), RWORK( * )
19* COMPLEX AF( LDA, * ), C( LDA, * ), CC( LDA, * ),
20* \$ Q( LDA, * ), TAU( * ), WORK( LWORK )
21* ..
22*
23*
24*> \par Purpose:
25* =============
26*>
27*> \verbatim
28*>
29*> CRQT03 tests CUNMRQ, which computes Q*C, Q'*C, C*Q or C*Q'.
30*>
31*> CRQT03 compares the results of a call to CUNMRQ with the results of
32*> forming Q explicitly by a call to CUNGRQ and then performing matrix
33*> multiplication by a call to CGEMM.
34*> \endverbatim
35*
36* Arguments:
37* ==========
38*
39*> \param[in] M
40*> \verbatim
41*> M is INTEGER
42*> The number of rows or columns of the matrix C; C is n-by-m if
43*> Q is applied from the left, or m-by-n if Q is applied from
44*> the right. M >= 0.
45*> \endverbatim
46*>
47*> \param[in] N
48*> \verbatim
49*> N is INTEGER
50*> The order of the orthogonal matrix Q. N >= 0.
51*> \endverbatim
52*>
53*> \param[in] K
54*> \verbatim
55*> K is INTEGER
56*> The number of elementary reflectors whose product defines the
57*> orthogonal matrix Q. N >= K >= 0.
58*> \endverbatim
59*>
60*> \param[in] AF
61*> \verbatim
62*> AF is COMPLEX array, dimension (LDA,N)
63*> Details of the RQ factorization of an m-by-n matrix, as
64*> returned by CGERQF. See CGERQF for further details.
65*> \endverbatim
66*>
67*> \param[out] C
68*> \verbatim
69*> C is COMPLEX array, dimension (LDA,N)
70*> \endverbatim
71*>
72*> \param[out] CC
73*> \verbatim
74*> CC is COMPLEX array, dimension (LDA,N)
75*> \endverbatim
76*>
77*> \param[out] Q
78*> \verbatim
79*> Q is COMPLEX array, dimension (LDA,N)
80*> \endverbatim
81*>
82*> \param[in] LDA
83*> \verbatim
84*> LDA is INTEGER
85*> The leading dimension of the arrays AF, C, CC, and Q.
86*> \endverbatim
87*>
88*> \param[in] TAU
89*> \verbatim
90*> TAU is COMPLEX array, dimension (min(M,N))
91*> The scalar factors of the elementary reflectors corresponding
92*> to the RQ factorization in AF.
93*> \endverbatim
94*>
95*> \param[out] WORK
96*> \verbatim
97*> WORK is COMPLEX array, dimension (LWORK)
98*> \endverbatim
99*>
100*> \param[in] LWORK
101*> \verbatim
102*> LWORK is INTEGER
103*> The length of WORK. LWORK must be at least M, and should be
104*> M*NB, where NB is the blocksize for this environment.
105*> \endverbatim
106*>
107*> \param[out] RWORK
108*> \verbatim
109*> RWORK is REAL array, dimension (M)
110*> \endverbatim
111*>
112*> \param[out] RESULT
113*> \verbatim
114*> RESULT is REAL array, dimension (4)
115*> The test ratios compare two techniques for multiplying a
116*> random matrix C by an n-by-n orthogonal matrix Q.
117*> RESULT(1) = norm( Q*C - Q*C ) / ( N * norm(C) * EPS )
118*> RESULT(2) = norm( C*Q - C*Q ) / ( N * norm(C) * EPS )
119*> RESULT(3) = norm( Q'*C - Q'*C )/ ( N * norm(C) * EPS )
120*> RESULT(4) = norm( C*Q' - C*Q' )/ ( N * norm(C) * EPS )
121*> \endverbatim
122*
123* Authors:
124* ========
125*
126*> \author Univ. of Tennessee
127*> \author Univ. of California Berkeley
128*> \author Univ. of Colorado Denver
129*> \author NAG Ltd.
130*
131*> \ingroup complex_lin
132*
133* =====================================================================
134 SUBROUTINE crqt03( M, N, K, AF, C, CC, Q, LDA, TAU, WORK, LWORK,
135 \$ RWORK, RESULT )
136*
137* -- LAPACK test routine --
138* -- LAPACK is a software package provided by Univ. of Tennessee, --
139* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
140*
141* .. Scalar Arguments ..
142 INTEGER K, LDA, LWORK, M, N
143* ..
144* .. Array Arguments ..
145 REAL RESULT( * ), RWORK( * )
146 COMPLEX AF( LDA, * ), C( LDA, * ), CC( LDA, * ),
147 \$ q( lda, * ), tau( * ), work( lwork )
148* ..
149*
150* =====================================================================
151*
152* .. Parameters ..
153 REAL ZERO, ONE
154 parameter( zero = 0.0e+0, one = 1.0e+0 )
155 COMPLEX ROGUE
156 parameter( rogue = ( -1.0e+10, -1.0e+10 ) )
157* ..
158* .. Local Scalars ..
159 CHARACTER SIDE, TRANS
160 INTEGER INFO, ISIDE, ITRANS, J, MC, MINMN, NC
161 REAL CNORM, EPS, RESID
162* ..
163* .. External Functions ..
164 LOGICAL LSAME
165 REAL CLANGE, SLAMCH
166 EXTERNAL lsame, clange, slamch
167* ..
168* .. External Subroutines ..
169 EXTERNAL cgemm, clacpy, clarnv, claset, cungrq, cunmrq
170* ..
171* .. Local Arrays ..
172 INTEGER ISEED( 4 )
173* ..
174* .. Intrinsic Functions ..
175 INTRINSIC cmplx, max, min, real
176* ..
177* .. Scalars in Common ..
178 CHARACTER*32 SRNAMT
179* ..
180* .. Common blocks ..
181 COMMON / srnamc / srnamt
182* ..
183* .. Data statements ..
184 DATA iseed / 1988, 1989, 1990, 1991 /
185* ..
186* .. Executable Statements ..
187*
188 eps = slamch( 'Epsilon' )
189 minmn = min( m, n )
190*
191* Quick return if possible
192*
193 IF( minmn.EQ.0 ) THEN
194 result( 1 ) = zero
195 result( 2 ) = zero
196 result( 3 ) = zero
197 result( 4 ) = zero
198 RETURN
199 END IF
200*
201* Copy the last k rows of the factorization to the array Q
202*
203 CALL claset( 'Full', n, n, rogue, rogue, q, lda )
204 IF( k.GT.0 .AND. n.GT.k )
205 \$ CALL clacpy( 'Full', k, n-k, af( m-k+1, 1 ), lda,
206 \$ q( n-k+1, 1 ), lda )
207 IF( k.GT.1 )
208 \$ CALL clacpy( 'Lower', k-1, k-1, af( m-k+2, n-k+1 ), lda,
209 \$ q( n-k+2, n-k+1 ), lda )
210*
211* Generate the n-by-n matrix Q
212*
213 srnamt = 'CUNGRQ'
214 CALL cungrq( n, n, k, q, lda, tau( minmn-k+1 ), work, lwork,
215 \$ info )
216*
217 DO 30 iside = 1, 2
218 IF( iside.EQ.1 ) THEN
219 side = 'L'
220 mc = n
221 nc = m
222 ELSE
223 side = 'R'
224 mc = m
225 nc = n
226 END IF
227*
228* Generate MC by NC matrix C
229*
230 DO 10 j = 1, nc
231 CALL clarnv( 2, iseed, mc, c( 1, j ) )
232 10 CONTINUE
233 cnorm = clange( '1', mc, nc, c, lda, rwork )
234 IF( cnorm.EQ.zero )
235 \$ cnorm = one
236*
237 DO 20 itrans = 1, 2
238 IF( itrans.EQ.1 ) THEN
239 trans = 'N'
240 ELSE
241 trans = 'C'
242 END IF
243*
244* Copy C
245*
246 CALL clacpy( 'Full', mc, nc, c, lda, cc, lda )
247*
248* Apply Q or Q' to C
249*
250 srnamt = 'CUNMRQ'
251 IF( k.GT.0 )
252 \$ CALL cunmrq( side, trans, mc, nc, k, af( m-k+1, 1 ), lda,
253 \$ tau( minmn-k+1 ), cc, lda, work, lwork,
254 \$ info )
255*
256* Form explicit product and subtract
257*
258 IF( lsame( side, 'L' ) ) THEN
259 CALL cgemm( trans, 'No transpose', mc, nc, mc,
260 \$ cmplx( -one ), q, lda, c, lda, cmplx( one ),
261 \$ cc, lda )
262 ELSE
263 CALL cgemm( 'No transpose', trans, mc, nc, nc,
264 \$ cmplx( -one ), c, lda, q, lda, cmplx( one ),
265 \$ cc, lda )
266 END IF
267*
268* Compute error in the difference
269*
270 resid = clange( '1', mc, nc, cc, lda, rwork )
271 result( ( iside-1 )*2+itrans ) = resid /
272 \$ ( real( max( 1, n ) )*cnorm*eps )
273*
274 20 CONTINUE
275 30 CONTINUE
276*
277 RETURN
278*
279* End of CRQT03
280*
281 END
subroutine cgemm(TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC)
CGEMM
Definition: cgemm.f:187
subroutine crqt03(M, N, K, AF, C, CC, Q, LDA, TAU, WORK, LWORK, RWORK, RESULT)
CRQT03
Definition: crqt03.f:136
subroutine claset(UPLO, M, N, ALPHA, BETA, A, LDA)
CLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition: claset.f:106
subroutine clarnv(IDIST, ISEED, N, X)
CLARNV returns a vector of random numbers from a uniform or normal distribution.
Definition: clarnv.f:99
subroutine clacpy(UPLO, M, N, A, LDA, B, LDB)
CLACPY copies all or part of one two-dimensional array to another.
Definition: clacpy.f:103
subroutine cunmrq(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, LWORK, INFO)
CUNMRQ
Definition: cunmrq.f:168
subroutine cungrq(M, N, K, A, LDA, TAU, WORK, LWORK, INFO)
CUNGRQ
Definition: cungrq.f:128