LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ crqt03()

subroutine crqt03 ( integer m,
integer n,
integer k,
complex, dimension( lda, * ) af,
complex, dimension( lda, * ) c,
complex, dimension( lda, * ) cc,
complex, dimension( lda, * ) q,
integer lda,
complex, dimension( * ) tau,
complex, dimension( lwork ) work,
integer lwork,
real, dimension( * ) rwork,
real, dimension( * ) result )

CRQT03

Purpose:
!>
!> CRQT03 tests CUNMRQ, which computes Q*C, Q'*C, C*Q or C*Q'.
!>
!> CRQT03 compares the results of a call to CUNMRQ with the results of
!> forming Q explicitly by a call to CUNGRQ and then performing matrix
!> multiplication by a call to CGEMM.
!> 
Parameters
[in]M
!>          M is INTEGER
!>          The number of rows or columns of the matrix C; C is n-by-m if
!>          Q is applied from the left, or m-by-n if Q is applied from
!>          the right.  M >= 0.
!> 
[in]N
!>          N is INTEGER
!>          The order of the orthogonal matrix Q.  N >= 0.
!> 
[in]K
!>          K is INTEGER
!>          The number of elementary reflectors whose product defines the
!>          orthogonal matrix Q.  N >= K >= 0.
!> 
[in]AF
!>          AF is COMPLEX array, dimension (LDA,N)
!>          Details of the RQ factorization of an m-by-n matrix, as
!>          returned by CGERQF. See CGERQF for further details.
!> 
[out]C
!>          C is COMPLEX array, dimension (LDA,N)
!> 
[out]CC
!>          CC is COMPLEX array, dimension (LDA,N)
!> 
[out]Q
!>          Q is COMPLEX array, dimension (LDA,N)
!> 
[in]LDA
!>          LDA is INTEGER
!>          The leading dimension of the arrays AF, C, CC, and Q.
!> 
[in]TAU
!>          TAU is COMPLEX array, dimension (min(M,N))
!>          The scalar factors of the elementary reflectors corresponding
!>          to the RQ factorization in AF.
!> 
[out]WORK
!>          WORK is COMPLEX array, dimension (LWORK)
!> 
[in]LWORK
!>          LWORK is INTEGER
!>          The length of WORK.  LWORK must be at least M, and should be
!>          M*NB, where NB is the blocksize for this environment.
!> 
[out]RWORK
!>          RWORK is REAL array, dimension (M)
!> 
[out]RESULT
!>          RESULT is REAL array, dimension (4)
!>          The test ratios compare two techniques for multiplying a
!>          random matrix C by an n-by-n orthogonal matrix Q.
!>          RESULT(1) = norm( Q*C - Q*C )  / ( N * norm(C) * EPS )
!>          RESULT(2) = norm( C*Q - C*Q )  / ( N * norm(C) * EPS )
!>          RESULT(3) = norm( Q'*C - Q'*C )/ ( N * norm(C) * EPS )
!>          RESULT(4) = norm( C*Q' - C*Q' )/ ( N * norm(C) * EPS )
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 134 of file crqt03.f.

136*
137* -- LAPACK test routine --
138* -- LAPACK is a software package provided by Univ. of Tennessee, --
139* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
140*
141* .. Scalar Arguments ..
142 INTEGER K, LDA, LWORK, M, N
143* ..
144* .. Array Arguments ..
145 REAL RESULT( * ), RWORK( * )
146 COMPLEX AF( LDA, * ), C( LDA, * ), CC( LDA, * ),
147 $ Q( LDA, * ), TAU( * ), WORK( LWORK )
148* ..
149*
150* =====================================================================
151*
152* .. Parameters ..
153 REAL ZERO, ONE
154 parameter( zero = 0.0e+0, one = 1.0e+0 )
155 COMPLEX ROGUE
156 parameter( rogue = ( -1.0e+10, -1.0e+10 ) )
157* ..
158* .. Local Scalars ..
159 CHARACTER SIDE, TRANS
160 INTEGER INFO, ISIDE, ITRANS, J, MC, MINMN, NC
161 REAL CNORM, EPS, RESID
162* ..
163* .. External Functions ..
164 LOGICAL LSAME
165 REAL CLANGE, SLAMCH
166 EXTERNAL lsame, clange, slamch
167* ..
168* .. External Subroutines ..
169 EXTERNAL cgemm, clacpy, clarnv, claset, cungrq, cunmrq
170* ..
171* .. Local Arrays ..
172 INTEGER ISEED( 4 )
173* ..
174* .. Intrinsic Functions ..
175 INTRINSIC cmplx, max, min, real
176* ..
177* .. Scalars in Common ..
178 CHARACTER*32 SRNAMT
179* ..
180* .. Common blocks ..
181 COMMON / srnamc / srnamt
182* ..
183* .. Data statements ..
184 DATA iseed / 1988, 1989, 1990, 1991 /
185* ..
186* .. Executable Statements ..
187*
188 eps = slamch( 'Epsilon' )
189 minmn = min( m, n )
190*
191* Quick return if possible
192*
193 IF( minmn.EQ.0 ) THEN
194 result( 1 ) = zero
195 result( 2 ) = zero
196 result( 3 ) = zero
197 result( 4 ) = zero
198 RETURN
199 END IF
200*
201* Copy the last k rows of the factorization to the array Q
202*
203 CALL claset( 'Full', n, n, rogue, rogue, q, lda )
204 IF( k.GT.0 .AND. n.GT.k )
205 $ CALL clacpy( 'Full', k, n-k, af( m-k+1, 1 ), lda,
206 $ q( n-k+1, 1 ), lda )
207 IF( k.GT.1 )
208 $ CALL clacpy( 'Lower', k-1, k-1, af( m-k+2, n-k+1 ), lda,
209 $ q( n-k+2, n-k+1 ), lda )
210*
211* Generate the n-by-n matrix Q
212*
213 srnamt = 'CUNGRQ'
214 CALL cungrq( n, n, k, q, lda, tau( minmn-k+1 ), work, lwork,
215 $ info )
216*
217 DO 30 iside = 1, 2
218 IF( iside.EQ.1 ) THEN
219 side = 'L'
220 mc = n
221 nc = m
222 ELSE
223 side = 'R'
224 mc = m
225 nc = n
226 END IF
227*
228* Generate MC by NC matrix C
229*
230 DO 10 j = 1, nc
231 CALL clarnv( 2, iseed, mc, c( 1, j ) )
232 10 CONTINUE
233 cnorm = clange( '1', mc, nc, c, lda, rwork )
234 IF( cnorm.EQ.zero )
235 $ cnorm = one
236*
237 DO 20 itrans = 1, 2
238 IF( itrans.EQ.1 ) THEN
239 trans = 'N'
240 ELSE
241 trans = 'C'
242 END IF
243*
244* Copy C
245*
246 CALL clacpy( 'Full', mc, nc, c, lda, cc, lda )
247*
248* Apply Q or Q' to C
249*
250 srnamt = 'CUNMRQ'
251 IF( k.GT.0 )
252 $ CALL cunmrq( side, trans, mc, nc, k, af( m-k+1, 1 ), lda,
253 $ tau( minmn-k+1 ), cc, lda, work, lwork,
254 $ info )
255*
256* Form explicit product and subtract
257*
258 IF( lsame( side, 'L' ) ) THEN
259 CALL cgemm( trans, 'No transpose', mc, nc, mc,
260 $ cmplx( -one ), q, lda, c, lda, cmplx( one ),
261 $ cc, lda )
262 ELSE
263 CALL cgemm( 'No transpose', trans, mc, nc, nc,
264 $ cmplx( -one ), c, lda, q, lda, cmplx( one ),
265 $ cc, lda )
266 END IF
267*
268* Compute error in the difference
269*
270 resid = clange( '1', mc, nc, cc, lda, rwork )
271 result( ( iside-1 )*2+itrans ) = resid /
272 $ ( real( max( 1, n ) )*cnorm*eps )
273*
274 20 CONTINUE
275 30 CONTINUE
276*
277 RETURN
278*
279* End of CRQT03
280*
subroutine cgemm(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
CGEMM
Definition cgemm.f:188
subroutine clacpy(uplo, m, n, a, lda, b, ldb)
CLACPY copies all or part of one two-dimensional array to another.
Definition clacpy.f:101
real function slamch(cmach)
SLAMCH
Definition slamch.f:68
real function clange(norm, m, n, a, lda, work)
CLANGE returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition clange.f:113
subroutine clarnv(idist, iseed, n, x)
CLARNV returns a vector of random numbers from a uniform or normal distribution.
Definition clarnv.f:97
subroutine claset(uplo, m, n, alpha, beta, a, lda)
CLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition claset.f:104
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
subroutine cungrq(m, n, k, a, lda, tau, work, lwork, info)
CUNGRQ
Definition cungrq.f:126
subroutine cunmrq(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
CUNMRQ
Definition cunmrq.f:166
Here is the call graph for this function:
Here is the caller graph for this function: