LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Modules Pages

◆ zggrqf()

subroutine zggrqf ( integer m,
integer p,
integer n,
complex*16, dimension( lda, * ) a,
integer lda,
complex*16, dimension( * ) taua,
complex*16, dimension( ldb, * ) b,
integer ldb,
complex*16, dimension( * ) taub,
complex*16, dimension( * ) work,
integer lwork,
integer info )

ZGGRQF

Download ZGGRQF + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!> !> ZGGRQF computes a generalized RQ factorization of an M-by-N matrix A !> and a P-by-N matrix B: !> !> A = R*Q, B = Z*T*Q, !> !> where Q is an N-by-N unitary matrix, Z is a P-by-P unitary !> matrix, and R and T assume one of the forms: !> !> if M <= N, R = ( 0 R12 ) M, or if M > N, R = ( R11 ) M-N, !> N-M M ( R21 ) N !> N !> !> where R12 or R21 is upper triangular, and !> !> if P >= N, T = ( T11 ) N , or if P < N, T = ( T11 T12 ) P, !> ( 0 ) P-N P N-P !> N !> !> where T11 is upper triangular. !> !> In particular, if B is square and nonsingular, the GRQ factorization !> of A and B implicitly gives the RQ factorization of A*inv(B): !> !> A*inv(B) = (R*inv(T))*Z**H !> !> where inv(B) denotes the inverse of the matrix B, and Z**H denotes the !> conjugate transpose of the matrix Z. !>
Parameters
[in]M
!> M is INTEGER !> The number of rows of the matrix A. M >= 0. !>
[in]P
!> P is INTEGER !> The number of rows of the matrix B. P >= 0. !>
[in]N
!> N is INTEGER !> The number of columns of the matrices A and B. N >= 0. !>
[in,out]A
!> A is COMPLEX*16 array, dimension (LDA,N) !> On entry, the M-by-N matrix A. !> On exit, if M <= N, the upper triangle of the subarray !> A(1:M,N-M+1:N) contains the M-by-M upper triangular matrix R; !> if M > N, the elements on and above the (M-N)-th subdiagonal !> contain the M-by-N upper trapezoidal matrix R; the remaining !> elements, with the array TAUA, represent the unitary !> matrix Q as a product of elementary reflectors (see Further !> Details). !>
[in]LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,M). !>
[out]TAUA
!> TAUA is COMPLEX*16 array, dimension (min(M,N)) !> The scalar factors of the elementary reflectors which !> represent the unitary matrix Q (see Further Details). !>
[in,out]B
!> B is COMPLEX*16 array, dimension (LDB,N) !> On entry, the P-by-N matrix B. !> On exit, the elements on and above the diagonal of the array !> contain the min(P,N)-by-N upper trapezoidal matrix T (T is !> upper triangular if P >= N); the elements below the diagonal, !> with the array TAUB, represent the unitary matrix Z as a !> product of elementary reflectors (see Further Details). !>
[in]LDB
!> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,P). !>
[out]TAUB
!> TAUB is COMPLEX*16 array, dimension (min(P,N)) !> The scalar factors of the elementary reflectors which !> represent the unitary matrix Z (see Further Details). !>
[out]WORK
!> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. !>
[in]LWORK
!> LWORK is INTEGER !> The dimension of the array WORK. LWORK >= max(1,N,M,P). !> For optimum performance LWORK >= max(N,M,P)*max(NB1,NB2,NB3), !> where NB1 is the optimal blocksize for the RQ factorization !> of an M-by-N matrix, NB2 is the optimal blocksize for the !> QR factorization of a P-by-N matrix, and NB3 is the optimal !> blocksize for a call of ZUNMRQ. !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA. !>
[out]INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO=-i, the i-th argument had an illegal value. !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> !> The matrix Q is represented as a product of elementary reflectors !> !> Q = H(1) H(2) . . . H(k), where k = min(m,n). !> !> Each H(i) has the form !> !> H(i) = I - taua * v * v**H !> !> where taua is a complex scalar, and v is a complex vector with !> v(n-k+i+1:n) = 0 and v(n-k+i) = 1; v(1:n-k+i-1) is stored on exit in !> A(m-k+i,1:n-k+i-1), and taua in TAUA(i). !> To form Q explicitly, use LAPACK subroutine ZUNGRQ. !> To use Q to update another matrix, use LAPACK subroutine ZUNMRQ. !> !> The matrix Z is represented as a product of elementary reflectors !> !> Z = H(1) H(2) . . . H(k), where k = min(p,n). !> !> Each H(i) has the form !> !> H(i) = I - taub * v * v**H !> !> where taub is a complex scalar, and v is a complex vector with !> v(1:i-1) = 0 and v(i) = 1; v(i+1:p) is stored on exit in B(i+1:p,i), !> and taub in TAUB(i). !> To form Z explicitly, use LAPACK subroutine ZUNGQR. !> To use Z to update another matrix, use LAPACK subroutine ZUNMQR. !>

Definition at line 210 of file zggrqf.f.

212*
213* -- LAPACK computational routine --
214* -- LAPACK is a software package provided by Univ. of Tennessee, --
215* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
216*
217* .. Scalar Arguments ..
218 INTEGER INFO, LDA, LDB, LWORK, M, N, P
219* ..
220* .. Array Arguments ..
221 COMPLEX*16 A( LDA, * ), B( LDB, * ), TAUA( * ), TAUB( * ),
222 $ WORK( * )
223* ..
224*
225* =====================================================================
226*
227* .. Local Scalars ..
228 LOGICAL LQUERY
229 INTEGER LOPT, LWKOPT, NB, NB1, NB2, NB3
230* ..
231* .. External Subroutines ..
232 EXTERNAL xerbla, zgeqrf, zgerqf, zunmrq
233* ..
234* .. External Functions ..
235 INTEGER ILAENV
236 EXTERNAL ilaenv
237* ..
238* .. Intrinsic Functions ..
239 INTRINSIC int, max, min
240* ..
241* .. Executable Statements ..
242*
243* Test the input parameters
244*
245 info = 0
246 nb1 = ilaenv( 1, 'ZGERQF', ' ', m, n, -1, -1 )
247 nb2 = ilaenv( 1, 'ZGEQRF', ' ', p, n, -1, -1 )
248 nb3 = ilaenv( 1, 'ZUNMRQ', ' ', m, n, p, -1 )
249 nb = max( nb1, nb2, nb3 )
250 lwkopt = max( 1, max( n, m, p )*nb )
251 work( 1 ) = lwkopt
252 lquery = ( lwork.EQ.-1 )
253 IF( m.LT.0 ) THEN
254 info = -1
255 ELSE IF( p.LT.0 ) THEN
256 info = -2
257 ELSE IF( n.LT.0 ) THEN
258 info = -3
259 ELSE IF( lda.LT.max( 1, m ) ) THEN
260 info = -5
261 ELSE IF( ldb.LT.max( 1, p ) ) THEN
262 info = -8
263 ELSE IF( lwork.LT.max( 1, m, p, n ) .AND. .NOT.lquery ) THEN
264 info = -11
265 END IF
266 IF( info.NE.0 ) THEN
267 CALL xerbla( 'ZGGRQF', -info )
268 RETURN
269 ELSE IF( lquery ) THEN
270 RETURN
271 END IF
272*
273* RQ factorization of M-by-N matrix A: A = R*Q
274*
275 CALL zgerqf( m, n, a, lda, taua, work, lwork, info )
276 lopt = int( work( 1 ) )
277*
278* Update B := B*Q**H
279*
280 CALL zunmrq( 'Right', 'Conjugate Transpose', p, n, min( m, n ),
281 $ a( max( 1, m-n+1 ), 1 ), lda, taua, b, ldb, work,
282 $ lwork, info )
283 lopt = max( lopt, int( work( 1 ) ) )
284*
285* QR factorization of P-by-N matrix B: B = Z*T
286*
287 CALL zgeqrf( p, n, b, ldb, taub, work, lwork, info )
288 work( 1 ) = max( lopt, int( work( 1 ) ) )
289*
290 RETURN
291*
292* End of ZGGRQF
293*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine zgeqrf(m, n, a, lda, tau, work, lwork, info)
ZGEQRF
Definition zgeqrf.f:144
subroutine zgerqf(m, n, a, lda, tau, work, lwork, info)
ZGERQF
Definition zgerqf.f:137
integer function ilaenv(ispec, name, opts, n1, n2, n3, n4)
ILAENV
Definition ilaenv.f:160
subroutine zunmrq(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
ZUNMRQ
Definition zunmrq.f:165
Here is the call graph for this function:
Here is the caller graph for this function: