LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
sspgv.f
Go to the documentation of this file.
1*> \brief \b SSPGV
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> Download SSPGV + dependencies
9*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sspgv.f">
10*> [TGZ]</a>
11*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sspgv.f">
12*> [ZIP]</a>
13*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sspgv.f">
14*> [TXT]</a>
15*
16* Definition:
17* ===========
18*
19* SUBROUTINE SSPGV( ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK,
20* INFO )
21*
22* .. Scalar Arguments ..
23* CHARACTER JOBZ, UPLO
24* INTEGER INFO, ITYPE, LDZ, N
25* ..
26* .. Array Arguments ..
27* REAL AP( * ), BP( * ), W( * ), WORK( * ),
28* $ Z( LDZ, * )
29* ..
30*
31*
32*> \par Purpose:
33* =============
34*>
35*> \verbatim
36*>
37*> SSPGV computes all the eigenvalues and, optionally, the eigenvectors
38*> of a real generalized symmetric-definite eigenproblem, of the form
39*> A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x.
40*> Here A and B are assumed to be symmetric, stored in packed format,
41*> and B is also positive definite.
42*> \endverbatim
43*
44* Arguments:
45* ==========
46*
47*> \param[in] ITYPE
48*> \verbatim
49*> ITYPE is INTEGER
50*> Specifies the problem type to be solved:
51*> = 1: A*x = (lambda)*B*x
52*> = 2: A*B*x = (lambda)*x
53*> = 3: B*A*x = (lambda)*x
54*> \endverbatim
55*>
56*> \param[in] JOBZ
57*> \verbatim
58*> JOBZ is CHARACTER*1
59*> = 'N': Compute eigenvalues only;
60*> = 'V': Compute eigenvalues and eigenvectors.
61*> \endverbatim
62*>
63*> \param[in] UPLO
64*> \verbatim
65*> UPLO is CHARACTER*1
66*> = 'U': Upper triangles of A and B are stored;
67*> = 'L': Lower triangles of A and B are stored.
68*> \endverbatim
69*>
70*> \param[in] N
71*> \verbatim
72*> N is INTEGER
73*> The order of the matrices A and B. N >= 0.
74*> \endverbatim
75*>
76*> \param[in,out] AP
77*> \verbatim
78*> AP is REAL array, dimension (N*(N+1)/2)
79*> On entry, the upper or lower triangle of the symmetric matrix
80*> A, packed columnwise in a linear array. The j-th column of A
81*> is stored in the array AP as follows:
82*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
83*> if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
84*>
85*> On exit, the contents of AP are destroyed.
86*> \endverbatim
87*>
88*> \param[in,out] BP
89*> \verbatim
90*> BP is REAL array, dimension (N*(N+1)/2)
91*> On entry, the upper or lower triangle of the symmetric matrix
92*> B, packed columnwise in a linear array. The j-th column of B
93*> is stored in the array BP as follows:
94*> if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
95*> if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
96*>
97*> On exit, the triangular factor U or L from the Cholesky
98*> factorization B = U**T*U or B = L*L**T, in the same storage
99*> format as B.
100*> \endverbatim
101*>
102*> \param[out] W
103*> \verbatim
104*> W is REAL array, dimension (N)
105*> If INFO = 0, the eigenvalues in ascending order.
106*> \endverbatim
107*>
108*> \param[out] Z
109*> \verbatim
110*> Z is REAL array, dimension (LDZ, N)
111*> If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
112*> eigenvectors. The eigenvectors are normalized as follows:
113*> if ITYPE = 1 or 2, Z**T*B*Z = I;
114*> if ITYPE = 3, Z**T*inv(B)*Z = I.
115*> If JOBZ = 'N', then Z is not referenced.
116*> \endverbatim
117*>
118*> \param[in] LDZ
119*> \verbatim
120*> LDZ is INTEGER
121*> The leading dimension of the array Z. LDZ >= 1, and if
122*> JOBZ = 'V', LDZ >= max(1,N).
123*> \endverbatim
124*>
125*> \param[out] WORK
126*> \verbatim
127*> WORK is REAL array, dimension (3*N)
128*> \endverbatim
129*>
130*> \param[out] INFO
131*> \verbatim
132*> INFO is INTEGER
133*> = 0: successful exit
134*> < 0: if INFO = -i, the i-th argument had an illegal value
135*> > 0: SPPTRF or SSPEV returned an error code:
136*> <= N: if INFO = i, SSPEV failed to converge;
137*> i off-diagonal elements of an intermediate
138*> tridiagonal form did not converge to zero.
139*> > N: if INFO = n + i, for 1 <= i <= n, then the leading
140*> principal minor of order i of B is not positive.
141*> The factorization of B could not be completed and
142*> no eigenvalues or eigenvectors were computed.
143*> \endverbatim
144*
145* Authors:
146* ========
147*
148*> \author Univ. of Tennessee
149*> \author Univ. of California Berkeley
150*> \author Univ. of Colorado Denver
151*> \author NAG Ltd.
152*
153*> \ingroup hpgv
154*
155* =====================================================================
156 SUBROUTINE sspgv( ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ,
157 $ WORK,
158 $ INFO )
159*
160* -- LAPACK driver routine --
161* -- LAPACK is a software package provided by Univ. of Tennessee, --
162* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
163*
164* .. Scalar Arguments ..
165 CHARACTER JOBZ, UPLO
166 INTEGER INFO, ITYPE, LDZ, N
167* ..
168* .. Array Arguments ..
169 REAL AP( * ), BP( * ), W( * ), WORK( * ),
170 $ Z( LDZ, * )
171* ..
172*
173* =====================================================================
174*
175* .. Local Scalars ..
176 LOGICAL UPPER, WANTZ
177 CHARACTER TRANS
178 INTEGER J, NEIG
179* ..
180* .. External Functions ..
181 LOGICAL LSAME
182 EXTERNAL LSAME
183* ..
184* .. External Subroutines ..
185 EXTERNAL spptrf, sspev, sspgst, stpmv, stpsv,
186 $ xerbla
187* ..
188* .. Executable Statements ..
189*
190* Test the input parameters.
191*
192 wantz = lsame( jobz, 'V' )
193 upper = lsame( uplo, 'U' )
194*
195 info = 0
196 IF( itype.LT.1 .OR. itype.GT.3 ) THEN
197 info = -1
198 ELSE IF( .NOT.( wantz .OR. lsame( jobz, 'N' ) ) ) THEN
199 info = -2
200 ELSE IF( .NOT.( upper .OR. lsame( uplo, 'L' ) ) ) THEN
201 info = -3
202 ELSE IF( n.LT.0 ) THEN
203 info = -4
204 ELSE IF( ldz.LT.1 .OR. ( wantz .AND. ldz.LT.n ) ) THEN
205 info = -9
206 END IF
207 IF( info.NE.0 ) THEN
208 CALL xerbla( 'SSPGV ', -info )
209 RETURN
210 END IF
211*
212* Quick return if possible
213*
214 IF( n.EQ.0 )
215 $ RETURN
216*
217* Form a Cholesky factorization of B.
218*
219 CALL spptrf( uplo, n, bp, info )
220 IF( info.NE.0 ) THEN
221 info = n + info
222 RETURN
223 END IF
224*
225* Transform problem to standard eigenvalue problem and solve.
226*
227 CALL sspgst( itype, uplo, n, ap, bp, info )
228 CALL sspev( jobz, uplo, n, ap, w, z, ldz, work, info )
229*
230 IF( wantz ) THEN
231*
232* Backtransform eigenvectors to the original problem.
233*
234 neig = n
235 IF( info.GT.0 )
236 $ neig = info - 1
237 IF( itype.EQ.1 .OR. itype.EQ.2 ) THEN
238*
239* For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
240* backtransform eigenvectors: x = inv(L)**T*y or inv(U)*y
241*
242 IF( upper ) THEN
243 trans = 'N'
244 ELSE
245 trans = 'T'
246 END IF
247*
248 DO 10 j = 1, neig
249 CALL stpsv( uplo, trans, 'Non-unit', n, bp, z( 1, j ),
250 $ 1 )
251 10 CONTINUE
252*
253 ELSE IF( itype.EQ.3 ) THEN
254*
255* For B*A*x=(lambda)*x;
256* backtransform eigenvectors: x = L*y or U**T*y
257*
258 IF( upper ) THEN
259 trans = 'T'
260 ELSE
261 trans = 'N'
262 END IF
263*
264 DO 20 j = 1, neig
265 CALL stpmv( uplo, trans, 'Non-unit', n, bp, z( 1, j ),
266 $ 1 )
267 20 CONTINUE
268 END IF
269 END IF
270 RETURN
271*
272* End of SSPGV
273*
274 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine sspev(jobz, uplo, n, ap, w, z, ldz, work, info)
SSPEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices
Definition sspev.f:128
subroutine sspgst(itype, uplo, n, ap, bp, info)
SSPGST
Definition sspgst.f:111
subroutine sspgv(itype, jobz, uplo, n, ap, bp, w, z, ldz, work, info)
SSPGV
Definition sspgv.f:159
subroutine spptrf(uplo, n, ap, info)
SPPTRF
Definition spptrf.f:117
subroutine stpmv(uplo, trans, diag, n, ap, x, incx)
STPMV
Definition stpmv.f:142
subroutine stpsv(uplo, trans, diag, n, ap, x, incx)
STPSV
Definition stpsv.f:144