LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
stpsv.f
Go to the documentation of this file.
1*> \brief \b STPSV
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8* Definition:
9* ===========
10*
11* SUBROUTINE STPSV(UPLO,TRANS,DIAG,N,AP,X,INCX)
12*
13* .. Scalar Arguments ..
14* INTEGER INCX,N
15* CHARACTER DIAG,TRANS,UPLO
16* ..
17* .. Array Arguments ..
18* REAL AP(*),X(*)
19* ..
20*
21*
22*> \par Purpose:
23* =============
24*>
25*> \verbatim
26*>
27*> STPSV solves one of the systems of equations
28*>
29*> A*x = b, or A**T*x = b,
30*>
31*> where b and x are n element vectors and A is an n by n unit, or
32*> non-unit, upper or lower triangular matrix, supplied in packed form.
33*>
34*> No test for singularity or near-singularity is included in this
35*> routine. Such tests must be performed before calling this routine.
36*> \endverbatim
37*
38* Arguments:
39* ==========
40*
41*> \param[in] UPLO
42*> \verbatim
43*> UPLO is CHARACTER*1
44*> On entry, UPLO specifies whether the matrix is an upper or
45*> lower triangular matrix as follows:
46*>
47*> UPLO = 'U' or 'u' A is an upper triangular matrix.
48*>
49*> UPLO = 'L' or 'l' A is a lower triangular matrix.
50*> \endverbatim
51*>
52*> \param[in] TRANS
53*> \verbatim
54*> TRANS is CHARACTER*1
55*> On entry, TRANS specifies the equations to be solved as
56*> follows:
57*>
58*> TRANS = 'N' or 'n' A*x = b.
59*>
60*> TRANS = 'T' or 't' A**T*x = b.
61*>
62*> TRANS = 'C' or 'c' A**T*x = b.
63*> \endverbatim
64*>
65*> \param[in] DIAG
66*> \verbatim
67*> DIAG is CHARACTER*1
68*> On entry, DIAG specifies whether or not A is unit
69*> triangular as follows:
70*>
71*> DIAG = 'U' or 'u' A is assumed to be unit triangular.
72*>
73*> DIAG = 'N' or 'n' A is not assumed to be unit
74*> triangular.
75*> \endverbatim
76*>
77*> \param[in] N
78*> \verbatim
79*> N is INTEGER
80*> On entry, N specifies the order of the matrix A.
81*> N must be at least zero.
82*> \endverbatim
83*>
84*> \param[in] AP
85*> \verbatim
86*> AP is REAL array, dimension at least
87*> ( ( n*( n + 1 ) )/2 ).
88*> Before entry with UPLO = 'U' or 'u', the array AP must
89*> contain the upper triangular matrix packed sequentially,
90*> column by column, so that AP( 1 ) contains a( 1, 1 ),
91*> AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 )
92*> respectively, and so on.
93*> Before entry with UPLO = 'L' or 'l', the array AP must
94*> contain the lower triangular matrix packed sequentially,
95*> column by column, so that AP( 1 ) contains a( 1, 1 ),
96*> AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 )
97*> respectively, and so on.
98*> Note that when DIAG = 'U' or 'u', the diagonal elements of
99*> A are not referenced, but are assumed to be unity.
100*> \endverbatim
101*>
102*> \param[in,out] X
103*> \verbatim
104*> X is REAL array, dimension at least
105*> ( 1 + ( n - 1 )*abs( INCX ) ).
106*> Before entry, the incremented array X must contain the n
107*> element right-hand side vector b. On exit, X is overwritten
108*> with the solution vector x.
109*> \endverbatim
110*>
111*> \param[in] INCX
112*> \verbatim
113*> INCX is INTEGER
114*> On entry, INCX specifies the increment for the elements of
115*> X. INCX must not be zero.
116*> \endverbatim
117*
118* Authors:
119* ========
120*
121*> \author Univ. of Tennessee
122*> \author Univ. of California Berkeley
123*> \author Univ. of Colorado Denver
124*> \author NAG Ltd.
125*
126*> \ingroup tpsv
127*
128*> \par Further Details:
129* =====================
130*>
131*> \verbatim
132*>
133*> Level 2 Blas routine.
134*>
135*> -- Written on 22-October-1986.
136*> Jack Dongarra, Argonne National Lab.
137*> Jeremy Du Croz, Nag Central Office.
138*> Sven Hammarling, Nag Central Office.
139*> Richard Hanson, Sandia National Labs.
140*> \endverbatim
141*>
142* =====================================================================
143 SUBROUTINE stpsv(UPLO,TRANS,DIAG,N,AP,X,INCX)
144*
145* -- Reference BLAS level2 routine --
146* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
147* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
148*
149* .. Scalar Arguments ..
150 INTEGER INCX,N
151 CHARACTER DIAG,TRANS,UPLO
152* ..
153* .. Array Arguments ..
154 REAL AP(*),X(*)
155* ..
156*
157* =====================================================================
158*
159* .. Parameters ..
160 REAL ZERO
161 parameter(zero=0.0e+0)
162* ..
163* .. Local Scalars ..
164 REAL TEMP
165 INTEGER I,INFO,IX,J,JX,K,KK,KX
166 LOGICAL NOUNIT
167* ..
168* .. External Functions ..
169 LOGICAL LSAME
170 EXTERNAL lsame
171* ..
172* .. External Subroutines ..
173 EXTERNAL xerbla
174* ..
175*
176* Test the input parameters.
177*
178 info = 0
179 IF (.NOT.lsame(uplo,'U') .AND. .NOT.lsame(uplo,'L')) THEN
180 info = 1
181 ELSE IF (.NOT.lsame(trans,'N') .AND.
182 + .NOT.lsame(trans,'T') .AND.
183 + .NOT.lsame(trans,'C')) THEN
184 info = 2
185 ELSE IF (.NOT.lsame(diag,'U') .AND.
186 + .NOT.lsame(diag,'N')) THEN
187 info = 3
188 ELSE IF (n.LT.0) THEN
189 info = 4
190 ELSE IF (incx.EQ.0) THEN
191 info = 7
192 END IF
193 IF (info.NE.0) THEN
194 CALL xerbla('STPSV ',info)
195 RETURN
196 END IF
197*
198* Quick return if possible.
199*
200 IF (n.EQ.0) RETURN
201*
202 nounit = lsame(diag,'N')
203*
204* Set up the start point in X if the increment is not unity. This
205* will be ( N - 1 )*INCX too small for descending loops.
206*
207 IF (incx.LE.0) THEN
208 kx = 1 - (n-1)*incx
209 ELSE IF (incx.NE.1) THEN
210 kx = 1
211 END IF
212*
213* Start the operations. In this version the elements of AP are
214* accessed sequentially with one pass through AP.
215*
216 IF (lsame(trans,'N')) THEN
217*
218* Form x := inv( A )*x.
219*
220 IF (lsame(uplo,'U')) THEN
221 kk = (n* (n+1))/2
222 IF (incx.EQ.1) THEN
223 DO 20 j = n,1,-1
224 IF (x(j).NE.zero) THEN
225 IF (nounit) x(j) = x(j)/ap(kk)
226 temp = x(j)
227 k = kk - 1
228 DO 10 i = j - 1,1,-1
229 x(i) = x(i) - temp*ap(k)
230 k = k - 1
231 10 CONTINUE
232 END IF
233 kk = kk - j
234 20 CONTINUE
235 ELSE
236 jx = kx + (n-1)*incx
237 DO 40 j = n,1,-1
238 IF (x(jx).NE.zero) THEN
239 IF (nounit) x(jx) = x(jx)/ap(kk)
240 temp = x(jx)
241 ix = jx
242 DO 30 k = kk - 1,kk - j + 1,-1
243 ix = ix - incx
244 x(ix) = x(ix) - temp*ap(k)
245 30 CONTINUE
246 END IF
247 jx = jx - incx
248 kk = kk - j
249 40 CONTINUE
250 END IF
251 ELSE
252 kk = 1
253 IF (incx.EQ.1) THEN
254 DO 60 j = 1,n
255 IF (x(j).NE.zero) THEN
256 IF (nounit) x(j) = x(j)/ap(kk)
257 temp = x(j)
258 k = kk + 1
259 DO 50 i = j + 1,n
260 x(i) = x(i) - temp*ap(k)
261 k = k + 1
262 50 CONTINUE
263 END IF
264 kk = kk + (n-j+1)
265 60 CONTINUE
266 ELSE
267 jx = kx
268 DO 80 j = 1,n
269 IF (x(jx).NE.zero) THEN
270 IF (nounit) x(jx) = x(jx)/ap(kk)
271 temp = x(jx)
272 ix = jx
273 DO 70 k = kk + 1,kk + n - j
274 ix = ix + incx
275 x(ix) = x(ix) - temp*ap(k)
276 70 CONTINUE
277 END IF
278 jx = jx + incx
279 kk = kk + (n-j+1)
280 80 CONTINUE
281 END IF
282 END IF
283 ELSE
284*
285* Form x := inv( A**T )*x.
286*
287 IF (lsame(uplo,'U')) THEN
288 kk = 1
289 IF (incx.EQ.1) THEN
290 DO 100 j = 1,n
291 temp = x(j)
292 k = kk
293 DO 90 i = 1,j - 1
294 temp = temp - ap(k)*x(i)
295 k = k + 1
296 90 CONTINUE
297 IF (nounit) temp = temp/ap(kk+j-1)
298 x(j) = temp
299 kk = kk + j
300 100 CONTINUE
301 ELSE
302 jx = kx
303 DO 120 j = 1,n
304 temp = x(jx)
305 ix = kx
306 DO 110 k = kk,kk + j - 2
307 temp = temp - ap(k)*x(ix)
308 ix = ix + incx
309 110 CONTINUE
310 IF (nounit) temp = temp/ap(kk+j-1)
311 x(jx) = temp
312 jx = jx + incx
313 kk = kk + j
314 120 CONTINUE
315 END IF
316 ELSE
317 kk = (n* (n+1))/2
318 IF (incx.EQ.1) THEN
319 DO 140 j = n,1,-1
320 temp = x(j)
321 k = kk
322 DO 130 i = n,j + 1,-1
323 temp = temp - ap(k)*x(i)
324 k = k - 1
325 130 CONTINUE
326 IF (nounit) temp = temp/ap(kk-n+j)
327 x(j) = temp
328 kk = kk - (n-j+1)
329 140 CONTINUE
330 ELSE
331 kx = kx + (n-1)*incx
332 jx = kx
333 DO 160 j = n,1,-1
334 temp = x(jx)
335 ix = kx
336 DO 150 k = kk,kk - (n- (j+1)),-1
337 temp = temp - ap(k)*x(ix)
338 ix = ix - incx
339 150 CONTINUE
340 IF (nounit) temp = temp/ap(kk-n+j)
341 x(jx) = temp
342 jx = jx - incx
343 kk = kk - (n-j+1)
344 160 CONTINUE
345 END IF
346 END IF
347 END IF
348*
349 RETURN
350*
351* End of STPSV
352*
353 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine stpsv(uplo, trans, diag, n, ap, x, incx)
STPSV
Definition stpsv.f:144