ScaLAPACK 2.1  2.1
ScaLAPACK: Scalable Linear Algebra PACKage
pzbrddriver.f
Go to the documentation of this file.
1  PROGRAM pzbrddriver
2 *
3 * -- ScaLAPACK testing driver (version 1.7) --
4 * University of Tennessee, Knoxville, Oak Ridge National Laboratory,
5 * and University of California, Berkeley.
6 * March 13, 2000
7 *
8 * Purpose
9 * =======
10 *
11 * PZBRDDRIVER is the main test program for the COMPLEX*16
12 * ScaLAPACK BRD (bidiagonal reduction) routines.
13 *
14 * The program must be driven by a short data file. An annotated
15 * example of a data file can be obtained by deleting the first 3
16 * characters from the following 13 lines:
17 * 'ScaLAPACK BRD computation input file'
18 * 'PVM machine'
19 * 'BRD.out' output file name
20 * 6 device out
21 * 3 number of problems sizes
22 * 16 20 18 values of M
23 * 16 18 20 values of N
24 * 3 number of NB's
25 * 2 3 5 values of NB
26 * 7 number of process grids (ordered pairs of P & Q)
27 * 1 2 1 4 2 3 8 values of P
28 * 1 2 4 1 3 2 1 values of Q
29 * 1.0 threshold
30 *
31 *
32 * Internal Parameters
33 * ===================
34 *
35 * TOTMEM INTEGER, default = 2000000
36 * TOTMEM is a machine-specific parameter indicating the
37 * maximum amount of available memory in bytes.
38 * The user should customize TOTMEM to his platform. Remember
39 * to leave room in memory for the operating system, the BLACS
40 * buffer, etc. For example, on a system with 8 MB of memory
41 * per process (e.g., one processor on an Intel iPSC/860), the
42 * parameters we use are TOTMEM=6200000 (leaving 1.8 MB for OS,
43 * code, BLACS buffer, etc). However, for PVM, we usually set
44 * TOTMEM = 2000000. Some experimenting with the maximum value
45 * of TOTMEM may be required.
46 *
47 * INTGSZ INTEGER, default = 4 bytes.
48 * ZPLXSZ INTEGER, default = 16 bytes.
49 * INTGSZ and ZPLXSZ indicate the length in bytes on the
50 * given platform for an integer and a double precision
51 * complex.
52 * MEM COMPLEX*16 array, dimension ( TOTMEM / ZPLXSZ )
53 *
54 * All arrays used by SCALAPACK routines are allocated from
55 * this array and referenced by pointers. The integer IPA,
56 * for example, is a pointer to the starting element of MEM for
57 * the matrix A.
58 *
59 * =====================================================================
60 *
61 * .. Parameters ..
62  INTEGER block_cyclic_2d, csrc_, ctxt_, dlen_, dtype_,
63  $ lld_, mb_, m_, nb_, n_, rsrc_
64  parameter( block_cyclic_2d = 1, dlen_ = 9, dtype_ = 1,
65  $ ctxt_ = 2, m_ = 3, n_ = 4, mb_ = 5, nb_ = 6,
66  $ rsrc_ = 7, csrc_ = 8, lld_ = 9 )
67  INTEGER memsiz, ntests, totmem, zplxsz, dblesz
68  COMPLEX*16 padval
69  parameter( totmem = 2000000, zplxsz = 16, dblesz = 8,
70  $ memsiz = totmem / zplxsz, ntests = 20,
71  $ padval = ( -9923.0d+0, -9923.0d+0 ) )
72 * ..
73 * .. Local Scalars ..
74  LOGICAL check
75  CHARACTER*6 passed
76  CHARACTER*80 outfile
77  INTEGER i, iam, iaseed, ictxt, imidpad, info, ipa, ipd,
78  $ ipe, ipostpad, iprepad, iptp, iptq, ipw, j, k,
79  $ kfail, kpass, kskip, ktests, lwork, m, maxmn,
80  $ minmn, mnp, mnq, mp, mycol, myrow, n, nb,
81  $ ndiag, ngrids, nmat, nnb, noffd, nout, npcol,
82  $ nprocs, nprow, nq, workbrd, worksiz
83  REAL thresh
84  DOUBLE PRECISION anorm, fresid, nops, tmflops
85 * ..
86 * .. Local Arrays ..
87  INTEGER desca( dlen_ ), ierr( 1 ), nbval( ntests ),
88  $ mval( ntests ), nval( ntests ),
89  $ pval( ntests ), qval( ntests )
90  DOUBLE PRECISION ctime( 1 ), wtime( 1 )
91  COMPLEX*16 mem( memsiz )
92 * ..
93 * .. External Subroutines ..
94  EXTERNAL blacs_barrier, blacs_exit, blacs_get,
95  $ blacs_gridexit, blacs_gridinfo, blacs_gridinit,
96  $ blacs_pinfo, descinit, igsum2d, pzchekpad,
100 * ..
101 * .. External Functions ..
102  INTEGER iceil, numroc
103  DOUBLE PRECISION pzlange
104  EXTERNAL iceil, numroc, pzlange
105 * ..
106 * .. Intrinsic Functions ..
107  INTRINSIC dble, max, min
108 * ..
109 * .. Data statements ..
110  DATA ktests, kpass, kfail, kskip / 4*0 /
111 * ..
112 * .. Executable Statements ..
113 *
114 * Get starting information
115 *
116  CALL blacs_pinfo( iam, nprocs )
117  iaseed = 100
118  CALL pzbrdinfo( outfile, nout, nmat, mval, ntests, nval, ntests,
119  $ nnb, nbval, ntests, ngrids, pval, ntests, qval,
120  $ ntests, thresh, mem, iam, nprocs )
121  check = ( thresh.GE.0.0e+0 )
122 *
123 * Print headings
124 *
125  IF( iam.EQ.0 ) THEN
126  WRITE( nout, fmt = * )
127  WRITE( nout, fmt = 9995 )
128  WRITE( nout, fmt = 9994 )
129  WRITE( nout, fmt = * )
130  END IF
131 *
132 * Loop over different process grids
133 *
134  DO 30 i = 1, ngrids
135 *
136  nprow = pval( i )
137  npcol = qval( i )
138 *
139 * Make sure grid information is correct
140 *
141  ierr( 1 ) = 0
142  IF( nprow.LT.1 ) THEN
143  IF( iam.EQ.0 )
144  $ WRITE( nout, fmt = 9999 ) 'GRID', 'nprow', nprow
145  ierr( 1 ) = 1
146  ELSE IF( npcol.LT.1 ) THEN
147  IF( iam.EQ.0 )
148  $ WRITE( nout, fmt = 9999 ) 'GRID', 'npcol', npcol
149  ierr( 1 ) = 1
150  ELSE IF( nprow*npcol.GT.nprocs ) THEN
151  IF( iam.EQ.0 )
152  $ WRITE( nout, fmt = 9998 ) nprow*npcol, nprocs
153  ierr( 1 ) = 1
154  END IF
155 *
156  IF( ierr( 1 ).GT.0 ) THEN
157  IF( iam.EQ.0 )
158  $ WRITE( nout, fmt = 9997 ) 'grid'
159  kskip = kskip + 1
160  GO TO 30
161  END IF
162 *
163 * Define process grid
164 *
165  CALL blacs_get( -1, 0, ictxt )
166  CALL blacs_gridinit( ictxt, 'Row-major', nprow, npcol )
167  CALL blacs_gridinfo( ictxt, nprow, npcol, myrow, mycol )
168 *
169  IF( myrow.GE.nprow .OR. mycol.GE.npcol )
170  $ GO TO 30
171 *
172 * Go to bottom of loop if this case doesn't use my process
173 *
174  DO 20 j = 1, nmat
175 *
176  m = mval( j )
177  n = nval( j )
178 *
179 * Make sure matrix information is correct
180 *
181  ierr( 1 ) = 0
182  IF( m.LT.1 ) THEN
183  IF( iam.EQ.0 )
184  $ WRITE( nout, fmt = 9999 ) 'MATRIX', 'M', m
185  ierr( 1 ) = 1
186  ELSE IF( n.LT.1 ) THEN
187  IF( iam.EQ.0 )
188  $ WRITE( nout, fmt = 9999 ) 'MATRIX', 'N', n
189  ierr( 1 ) = 1
190  END IF
191 *
192 * Make sure no one had error
193 *
194  CALL igsum2d( ictxt, 'All', ' ', 1, 1, ierr, 1, -1, 0 )
195 *
196  IF( ierr( 1 ).GT.0 ) THEN
197  IF( iam.EQ.0 )
198  $ WRITE( nout, fmt = 9997 ) 'matrix'
199  kskip = kskip + 1
200  GO TO 20
201  END IF
202 *
203 * Loop over different blocking sizes
204 *
205  DO 10 k = 1, nnb
206 *
207  nb = nbval( k )
208 *
209 * Make sure nb is legal
210 *
211  ierr( 1 ) = 0
212  IF( nb.LT.1 ) THEN
213  ierr( 1 ) = 1
214  IF( iam.EQ.0 )
215  $ WRITE( nout, fmt = 9999 ) 'NB', 'NB', nb
216  END IF
217 *
218 * Check all processes for an error
219 *
220  CALL igsum2d( ictxt, 'All', ' ', 1, 1, ierr, 1, -1, 0 )
221 *
222  IF( ierr( 1 ).GT.0 ) THEN
223  IF( iam.EQ.0 )
224  $ WRITE( nout, fmt = 9997 ) 'NB'
225  kskip = kskip + 1
226  GO TO 10
227  END IF
228 *
229 * Padding constants
230 *
231  mp = numroc( m, nb, myrow, 0, nprow )
232  nq = numroc( n, nb, mycol, 0, npcol )
233  mnp = numroc( min( m, n ), nb, myrow, 0, nprow )
234  mnq = numroc( min( m, n ), nb, mycol, 0, npcol )
235  IF( check ) THEN
236  iprepad = max( nb, mp )
237  imidpad = nb
238  ipostpad = max( nb, nq )
239  ELSE
240  iprepad = 0
241  imidpad = 0
242  ipostpad = 0
243  END IF
244 *
245 * Initialize the array descriptor for the matrix A
246 *
247  CALL descinit( desca, m, n, nb, nb, 0, 0, ictxt,
248  $ max( 1, mp )+imidpad, ierr( 1 ) )
249 *
250  CALL igsum2d( ictxt, 'All', ' ', 1, 1, ierr, 1, -1, 0 )
251 *
252  IF( ierr( 1 ).LT.0 ) THEN
253  IF( iam.EQ.0 )
254  $ WRITE( nout, fmt = 9997 ) 'descriptor'
255  kskip = kskip + 1
256  GO TO 10
257  END IF
258 *
259 * Assign pointers into MEM for SCALAPACK arrays, A is
260 * allocated starting at position MEM( IPREPAD+1 )
261 *
262  IF( m.GE.n ) THEN
263  ndiag = mnq
264  noffd = mnp
265  ndiag = iceil( dblesz*ndiag, zplxsz )
266  noffd = iceil( dblesz*noffd, zplxsz )
267  ELSE
268  ndiag = mnp
269  noffd = numroc( min( m, n )-1, nb, mycol, 0, npcol )
270  ndiag = iceil( dblesz*ndiag, zplxsz )
271  noffd = iceil( dblesz*noffd, zplxsz )
272  END IF
273 *
274  ipa = iprepad + 1
275  ipd = ipa + desca( lld_ )*nq + ipostpad + iprepad
276  ipe = ipd + ndiag + ipostpad + iprepad
277  iptq = ipe + noffd + ipostpad + iprepad
278  iptp = iptq + mnq + ipostpad + iprepad
279  ipw = iptp + mnp + ipostpad + iprepad
280 *
281 * Calculate the amount of workspace required for the
282 * reduction
283 *
284  lwork = nb*( mp+nq+1 ) + nq
285  workbrd = lwork + ipostpad
286  worksiz = workbrd
287 *
288 * Figure the amount of workspace required by the check
289 *
290  IF( check ) THEN
291  worksiz = max( lwork, 2*nb*( mp+nq+nb ) ) + ipostpad
292  END IF
293 *
294 * Check for adequate memory for problem size
295 *
296  ierr( 1 ) = 0
297  IF( ipw+worksiz.GT.memsiz ) THEN
298  IF( iam.EQ.0 )
299  $ WRITE( nout, fmt = 9996 ) 'Bidiagonal reduction',
300  $ ( ipw+worksiz )*zplxsz
301  ierr( 1 ) = 1
302  END IF
303 *
304 * Check all processes for an error
305 *
306  CALL igsum2d( ictxt, 'All', ' ', 1, 1, ierr, 1, -1, 0 )
307 *
308  IF( ierr( 1 ).GT.0 ) THEN
309  IF( iam.EQ.0 )
310  $ WRITE( nout, fmt = 9997 ) 'MEMORY'
311  kskip = kskip + 1
312  GO TO 10
313  END IF
314 *
315 * Generate the matrix A
316 *
317  CALL pzmatgen( ictxt, 'No', 'No', desca( m_ ),
318  $ desca( n_ ), desca( mb_ ), desca( nb_ ),
319  $ mem( ipa ), desca( lld_ ), desca( rsrc_ ),
320  $ desca( csrc_ ), iaseed, 0, mp, 0, nq,
321  $ myrow, mycol, nprow, npcol )
322 *
323 * Need Infinity-norm of A for checking
324 *
325  IF( check ) THEN
326  CALL pzfillpad( ictxt, mp, nq, mem( ipa-iprepad ),
327  $ desca( lld_ ), iprepad, ipostpad,
328  $ padval )
329  CALL pzfillpad( ictxt, ndiag, 1, mem( ipd-iprepad ),
330  $ ndiag, iprepad, ipostpad, padval )
331  CALL pzfillpad( ictxt, noffd, 1, mem( ipe-iprepad ),
332  $ noffd, iprepad, ipostpad, padval )
333  CALL pzfillpad( ictxt, mnq, 1, mem( iptq-iprepad ),
334  $ mnq, iprepad, ipostpad, padval )
335  CALL pzfillpad( ictxt, mnp, 1, mem( iptp-iprepad ),
336  $ mnp, iprepad, ipostpad, padval )
337  CALL pzfillpad( ictxt, worksiz-ipostpad, 1,
338  $ mem( ipw-iprepad ), worksiz-ipostpad,
339  $ iprepad, ipostpad, padval )
340  anorm = pzlange( 'I', m, n, mem( ipa ), 1, 1, desca,
341  $ mem( ipw ) )
342  CALL pzchekpad( ictxt, 'PZLANGE', mp, nq,
343  $ mem( ipa-iprepad ), desca( lld_ ),
344  $ iprepad, ipostpad, padval )
345  CALL pzchekpad( ictxt, 'PZLANGE', worksiz-ipostpad,
346  $ 1, mem( ipw-iprepad ),
347  $ worksiz-ipostpad, iprepad, ipostpad,
348  $ padval )
349  CALL pzfillpad( ictxt, workbrd-ipostpad, 1,
350  $ mem( ipw-iprepad ), workbrd-ipostpad,
351  $ iprepad, ipostpad, padval )
352  END IF
353 *
354  CALL slboot()
355  CALL blacs_barrier( ictxt, 'All' )
356  CALL sltimer( 1 )
357 *
358 * Reduce to bidiagonal form
359 *
360  CALL pzgebrd( m, n, mem( ipa ), 1, 1, desca, mem( ipd ),
361  $ mem( ipe ), mem( iptq ), mem( iptp ),
362  $ mem( ipw ), lwork, info )
363 *
364  CALL sltimer( 1 )
365 *
366  IF( check ) THEN
367 *
368 * Check for memory overwrite
369 *
370  CALL pzchekpad( ictxt, 'PZGEBRD', mp, nq,
371  $ mem( ipa-iprepad ), desca( lld_ ),
372  $ iprepad, ipostpad, padval )
373  CALL pzchekpad( ictxt, 'PZGEBRD', ndiag, 1,
374  $ mem( ipd-iprepad ), ndiag, iprepad,
375  $ ipostpad, padval )
376  CALL pzchekpad( ictxt, 'PZGEBRD', noffd, 1,
377  $ mem( ipe-iprepad ), noffd, iprepad,
378  $ ipostpad, padval )
379  CALL pzchekpad( ictxt, 'PZGEBRD', mnq, 1,
380  $ mem( iptq-iprepad ), mnq, iprepad,
381  $ ipostpad, padval )
382  CALL pzchekpad( ictxt, 'PZGEBRD', mnp, 1,
383  $ mem( iptp-iprepad ), mnp, iprepad,
384  $ ipostpad, padval )
385  CALL pzchekpad( ictxt, 'PZGEBRD', workbrd-ipostpad,
386  $ 1, mem( ipw-iprepad ),
387  $ workbrd-ipostpad, iprepad,
388  $ ipostpad, padval )
389  CALL pzfillpad( ictxt, worksiz-ipostpad, 1,
390  $ mem( ipw-iprepad ), worksiz-ipostpad,
391  $ iprepad, ipostpad, padval )
392 *
393 * Compute fctres = ||A-Q*B*P|| / (||A|| * N * eps)
394 *
395  CALL pzgebdrv( m, n, mem( ipa ), 1, 1, desca,
396  $ mem( ipd ), mem( ipe ), mem( iptq ),
397  $ mem( iptp ), mem( ipw ), ierr( 1 ) )
398  CALL pzlafchk( 'No', 'No', m, n, mem( ipa ), 1, 1,
399  $ desca, iaseed, anorm, fresid,
400  $ mem( ipw ) )
401 *
402 * Check for memory overwrite
403 *
404  CALL pzchekpad( ictxt, 'PZGEBDRV', mp, nq,
405  $ mem( ipa-iprepad ), desca( lld_ ),
406  $ iprepad, ipostpad, padval )
407  CALL pzchekpad( ictxt, 'PZGEBDRV', ndiag, 1,
408  $ mem( ipd-iprepad ), ndiag, iprepad,
409  $ ipostpad, padval )
410  CALL pzchekpad( ictxt, 'PZGEBDRV', noffd, 1,
411  $ mem( ipe-iprepad ), noffd, iprepad,
412  $ ipostpad, padval )
413  CALL pzchekpad( ictxt, 'PZGEBDRV', worksiz-ipostpad,
414  $ 1, mem( ipw-iprepad ),
415  $ worksiz-ipostpad, iprepad,
416  $ ipostpad, padval )
417 *
418 * Test residual and detect NaN result
419 *
420  IF( fresid.LE.thresh .AND. fresid-fresid.EQ.0.0d+0
421  $ .AND. ierr( 1 ).EQ.0 ) THEN
422  kpass = kpass + 1
423  passed = 'PASSED'
424  ELSE
425  IF( myrow.EQ.0 .AND. mycol.EQ.0 )
426  $ WRITE( nout, fmt = 9986 ) fresid
427 *
428  kfail = kfail + 1
429  passed = 'FAILED'
430  END IF
431 *
432  IF( myrow.EQ.0 .AND. mycol.EQ.0 .AND. ierr( 1 ).NE.0 )
433  $ WRITE( nout, fmt = * )
434  $ 'D or E copies incorrect ...'
435  ELSE
436 *
437 * Don't perform the checking, only the timing operation
438 *
439  kpass = kpass + 1
440  fresid = fresid - fresid
441  passed = 'BYPASS'
442 *
443  END IF
444 *
445 * Gather maximum of all CPU and WALL clock timings
446 *
447  CALL slcombine( ictxt, 'All', '>', 'W', 1, 1, wtime )
448  CALL slcombine( ictxt, 'All', '>', 'C', 1, 1, ctime )
449 *
450 * Print results
451 *
452  IF( myrow.EQ.0 .AND. mycol.EQ.0 ) THEN
453 *
454 * BRD requires 32/3 N^3 floating point operations
455 *
456  maxmn = max( m, n )
457  minmn = min( m, n )
458  nops = 16.0d+0 * dble( minmn ) * dble( minmn ) *
459  $ ( dble( maxmn ) - dble( minmn ) / 3.0d+0 )
460  nops = nops / 1.0d+6
461 *
462 * Print WALL time
463 *
464  IF( wtime( 1 ).GT.0.0d+0 ) THEN
465  tmflops = nops / wtime( 1 )
466  ELSE
467  tmflops = 0.0d+0
468  END IF
469  IF( wtime( 1 ).GE.0.0d+0 )
470  $ WRITE( nout, fmt = 9993 ) 'WALL', m, n, nb, nprow,
471  $ npcol, wtime( 1 ), tmflops, fresid, passed
472 *
473 * Print CPU time
474 *
475  IF( ctime( 1 ).GT.0.0d+0 ) THEN
476  tmflops = nops / ctime( 1 )
477  ELSE
478  tmflops = 0.0d+0
479  END IF
480  IF( ctime( 1 ).GE.0.0d+0 )
481  $ WRITE( nout, fmt = 9993 ) 'CPU ', m, n, nb, nprow,
482  $ npcol, ctime( 1 ), tmflops, fresid, passed
483  END IF
484  10 CONTINUE
485  20 CONTINUE
486 *
487  CALL blacs_gridexit( ictxt )
488  30 CONTINUE
489 *
490 * Print ending messages and close output file
491 *
492  IF( iam.EQ.0 ) THEN
493  ktests = kpass + kfail + kskip
494  WRITE( nout, fmt = * )
495  WRITE( nout, fmt = 9992 ) ktests
496  IF( check ) THEN
497  WRITE( nout, fmt = 9991 ) kpass
498  WRITE( nout, fmt = 9989 ) kfail
499  ELSE
500  WRITE( nout, fmt = 9990 ) kpass
501  END IF
502  WRITE( nout, fmt = 9988 ) kskip
503  WRITE( nout, fmt = * )
504  WRITE( nout, fmt = * )
505  WRITE( nout, fmt = 9987 )
506  IF( nout.NE.6 .AND. nout.NE.0 ) CLOSE ( nout )
507  END IF
508 *
509  CALL blacs_exit( 0 )
510 *
511  9999 FORMAT( 'ILLEGAL ', a6, ': ', a5, ' = ', i3,
512  $ '; It should be at least 1' )
513  9998 FORMAT( 'ILLEGAL GRID: nprow*npcol = ', i4, '. It can be at most',
514  $ i4 )
515  9997 FORMAT( 'Bad ', a6, ' parameters: going on to next test case.' )
516  9996 FORMAT( 'Unable to perform ', a, ': need TOTMEM of at least',
517  $ i11 )
518  9995 FORMAT( 'TIME M N NB P Q BRD Time ',
519  $ ' MFLOPS Residual CHECK' )
520  9994 FORMAT( '---- ------ ------ --- ----- ----- --------- ',
521  $ '----------- -------- ------' )
522  9993 FORMAT( a4, 1x, i6, 1x, i6, 1x, i3, 1x, i5, 1x, i5, 1x, f9.2, 1x,
523  $ f11.2, 1x, f8.2, 1x, a6 )
524  9992 FORMAT( 'Finished', i4, ' tests, with the following results:' )
525  9991 FORMAT( i5, ' tests completed and passed residual checks.' )
526  9990 FORMAT( i5, ' tests completed without checking.' )
527  9989 FORMAT( i5, ' tests completed and failed residual checks.' )
528  9988 FORMAT( i5, ' tests skipped because of illegal input values.' )
529  9987 FORMAT( 'END OF TESTS.' )
530  9986 FORMAT( '||A - Q*B*P|| / (||A|| * N * eps) = ', g25.7 )
531 *
532  stop
533 *
534 * End of PZBRDDRIVER
535 *
536  END
pzbrdinfo
subroutine pzbrdinfo(SUMMRY, NOUT, NMAT, MVAL, LDMVAL, NVAL, LDNVAL, NNB, NBVAL, LDNBVAL, NGRIDS, PVAL, LDPVAL, QVAL, LDQVAL, THRESH, WORK, IAM, NPROCS)
Definition: pzbrdinfo.f:5
max
#define max(A, B)
Definition: pcgemr.c:180
pzlange
double precision function pzlange(NORM, M, N, A, IA, JA, DESCA, WORK)
Definition: pzlange.f:3
sltimer
subroutine sltimer(I)
Definition: sltimer.f:47
pzlafchk
subroutine pzlafchk(AFORM, DIAG, M, N, A, IA, JA, DESCA, IASEED, ANORM, FRESID, WORK)
Definition: pzlafchk.f:3
pzmatgen
subroutine pzmatgen(ICTXT, AFORM, DIAG, M, N, MB, NB, A, LDA, IAROW, IACOL, ISEED, IROFF, IRNUM, ICOFF, ICNUM, MYROW, MYCOL, NPROW, NPCOL)
Definition: pzmatgen.f:4
pzbrddriver
program pzbrddriver
Definition: pzbrddriver.f:1
descinit
subroutine descinit(DESC, M, N, MB, NB, IRSRC, ICSRC, ICTXT, LLD, INFO)
Definition: descinit.f:3
slboot
subroutine slboot()
Definition: sltimer.f:2
pzgebrd
subroutine pzgebrd(M, N, A, IA, JA, DESCA, D, E, TAUQ, TAUP, WORK, LWORK, INFO)
Definition: pzgebrd.f:3
numroc
integer function numroc(N, NB, IPROC, ISRCPROC, NPROCS)
Definition: numroc.f:2
pzgebdrv
subroutine pzgebdrv(M, N, A, IA, JA, DESCA, D, E, TAUQ, TAUP, WORK, INFO)
Definition: pzgebdrv.f:3
pzchekpad
subroutine pzchekpad(ICTXT, MESS, M, N, A, LDA, IPRE, IPOST, CHKVAL)
Definition: pzchekpad.f:3
slcombine
subroutine slcombine(ICTXT, SCOPE, OP, TIMETYPE, N, IBEG, TIMES)
Definition: sltimer.f:267
min
#define min(A, B)
Definition: pcgemr.c:181
pzfillpad
subroutine pzfillpad(ICTXT, M, N, A, LDA, IPRE, IPOST, CHKVAL)
Definition: pzfillpad.f:2
iceil
integer function iceil(INUM, IDENOM)
Definition: iceil.f:2