ScaLAPACK 2.1  2.1
ScaLAPACK: Scalable Linear Algebra PACKage
pzung2l.f
Go to the documentation of this file.
1  SUBROUTINE pzung2l( M, N, K, A, IA, JA, DESCA, TAU, WORK, LWORK,
2  $ INFO )
3 *
4 * -- ScaLAPACK routine (version 1.7) --
5 * University of Tennessee, Knoxville, Oak Ridge National Laboratory,
6 * and University of California, Berkeley.
7 * May 25, 2001
8 *
9 * .. Scalar Arguments ..
10  INTEGER IA, INFO, JA, K, LWORK, M, N
11 * ..
12 * .. Array Arguments ..
13  INTEGER DESCA( * )
14  COMPLEX*16 A( * ), TAU( * ), WORK( * )
15 * ..
16 *
17 * Purpose
18 * =======
19 *
20 * PZUNG2L generates an M-by-N complex distributed matrix Q denoting
21 * A(IA:IA+M-1,JA:JA+N-1) with orthonormal columns, which is defined as
22 * the last N columns of a product of K elementary reflectors of order M
23 *
24 * Q = H(k) . . . H(2) H(1)
25 *
26 * as returned by PZGEQLF.
27 *
28 * Notes
29 * =====
30 *
31 * Each global data object is described by an associated description
32 * vector. This vector stores the information required to establish
33 * the mapping between an object element and its corresponding process
34 * and memory location.
35 *
36 * Let A be a generic term for any 2D block cyclicly distributed array.
37 * Such a global array has an associated description vector DESCA.
38 * In the following comments, the character _ should be read as
39 * "of the global array".
40 *
41 * NOTATION STORED IN EXPLANATION
42 * --------------- -------------- --------------------------------------
43 * DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
44 * DTYPE_A = 1.
45 * CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
46 * the BLACS process grid A is distribu-
47 * ted over. The context itself is glo-
48 * bal, but the handle (the integer
49 * value) may vary.
50 * M_A (global) DESCA( M_ ) The number of rows in the global
51 * array A.
52 * N_A (global) DESCA( N_ ) The number of columns in the global
53 * array A.
54 * MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
55 * the rows of the array.
56 * NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
57 * the columns of the array.
58 * RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
59 * row of the array A is distributed.
60 * CSRC_A (global) DESCA( CSRC_ ) The process column over which the
61 * first column of the array A is
62 * distributed.
63 * LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
64 * array. LLD_A >= MAX(1,LOCr(M_A)).
65 *
66 * Let K be the number of rows or columns of a distributed matrix,
67 * and assume that its process grid has dimension p x q.
68 * LOCr( K ) denotes the number of elements of K that a process
69 * would receive if K were distributed over the p processes of its
70 * process column.
71 * Similarly, LOCc( K ) denotes the number of elements of K that a
72 * process would receive if K were distributed over the q processes of
73 * its process row.
74 * The values of LOCr() and LOCc() may be determined via a call to the
75 * ScaLAPACK tool function, NUMROC:
76 * LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
77 * LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
78 * An upper bound for these quantities may be computed by:
79 * LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
80 * LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
81 *
82 * Arguments
83 * =========
84 *
85 * M (global input) INTEGER
86 * The number of rows to be operated on i.e the number of rows
87 * of the distributed submatrix Q. M >= 0.
88 *
89 * N (global input) INTEGER
90 * The number of columns to be operated on i.e the number of
91 * columns of the distributed submatrix Q. M >= N >= 0.
92 *
93 * K (global input) INTEGER
94 * The number of elementary reflectors whose product defines the
95 * matrix Q. N >= K >= 0.
96 *
97 * A (local input/local output) COMPLEX*16 pointer into the
98 * local memory to an array of dimension (LLD_A,LOCc(JA+N-1)).
99 * On entry, the j-th column must contain the vector which
100 * defines the elementary reflector H(j), JA+N-K <= j <= JA+N-1,
101 * as returned by PZGEQLF in the K columns of its distributed
102 * matrix argument A(IA:*,JA+N-K:JA+N-1). On exit, this array
103 * contains the local pieces of the M-by-N distributed matrix Q.
104 *
105 * IA (global input) INTEGER
106 * The row index in the global array A indicating the first
107 * row of sub( A ).
108 *
109 * JA (global input) INTEGER
110 * The column index in the global array A indicating the
111 * first column of sub( A ).
112 *
113 * DESCA (global and local input) INTEGER array of dimension DLEN_.
114 * The array descriptor for the distributed matrix A.
115 *
116 * TAU (local input) COMPLEX*16, array, dimension LOCc(JA+N-1)
117 * This array contains the scalar factors TAU(j) of the
118 * elementary reflectors H(j) as returned by PZGEQLF.
119 * TAU is tied to the distributed matrix A.
120 *
121 * WORK (local workspace/local output) COMPLEX*16 array,
122 * dimension (LWORK)
123 * On exit, WORK(1) returns the minimal and optimal LWORK.
124 *
125 * LWORK (local or global input) INTEGER
126 * The dimension of the array WORK.
127 * LWORK is local input and must be at least
128 * LWORK >= MpA0 + MAX( 1, NqA0 ), where
129 *
130 * IROFFA = MOD( IA-1, MB_A ), ICOFFA = MOD( JA-1, NB_A ),
131 * IAROW = INDXG2P( IA, MB_A, MYROW, RSRC_A, NPROW ),
132 * IACOL = INDXG2P( JA, NB_A, MYCOL, CSRC_A, NPCOL ),
133 * MpA0 = NUMROC( M+IROFFA, MB_A, MYROW, IAROW, NPROW ),
134 * NqA0 = NUMROC( N+ICOFFA, NB_A, MYCOL, IACOL, NPCOL ),
135 *
136 * INDXG2P and NUMROC are ScaLAPACK tool functions;
137 * MYROW, MYCOL, NPROW and NPCOL can be determined by calling
138 * the subroutine BLACS_GRIDINFO.
139 *
140 * If LWORK = -1, then LWORK is global input and a workspace
141 * query is assumed; the routine only calculates the minimum
142 * and optimal size for all work arrays. Each of these
143 * values is returned in the first entry of the corresponding
144 * work array, and no error message is issued by PXERBLA.
145 *
146 *
147 * INFO (local output) INTEGER
148 * = 0: successful exit
149 * < 0: If the i-th argument is an array and the j-entry had
150 * an illegal value, then INFO = -(i*100+j), if the i-th
151 * argument is a scalar and had an illegal value, then
152 * INFO = -i.
153 *
154 * =====================================================================
155 *
156 * .. Parameters ..
157  INTEGER BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
158  $ lld_, mb_, m_, nb_, n_, rsrc_
159  parameter( block_cyclic_2d = 1, dlen_ = 9, dtype_ = 1,
160  $ ctxt_ = 2, m_ = 3, n_ = 4, mb_ = 5, nb_ = 6,
161  $ rsrc_ = 7, csrc_ = 8, lld_ = 9 )
162  COMPLEX*16 ONE, ZERO
163  parameter( one = ( 1.0d+0, 0.0d+0 ),
164  $ zero = ( 0.0d+0, 0.0d+0 ) )
165 * ..
166 * .. Local Scalars ..
167  LOGICAL LQUERY
168  CHARACTER COLBTOP, ROWBTOP
169  INTEGER IACOL, IAROW, ICTXT, J, JJ, LWMIN, MPA0, MYCOL,
170  $ myrow, npcol, nprow, nqa0
171  COMPLEX*16 TAUJ
172 * ..
173 * .. External Subroutines ..
174  EXTERNAL blacs_abort, blacs_gridinfo, chk1mat,
175  $ pb_topget, pb_topset, pxerbla, pzelset, pzlarf,
176  $ pzlaset, pzscal
177 * ..
178 * .. External Functions ..
179  INTEGER INDXG2L, INDXG2P, NUMROC
180  EXTERNAL indxg2l, indxg2p, numroc
181 * ..
182 * .. Intrinsic Functions ..
183  INTRINSIC dble, dcmplx, max, min, mod
184 * ..
185 * .. Executable Statements ..
186 *
187 * Get grid parameters
188 *
189  ictxt = desca( ctxt_ )
190  CALL blacs_gridinfo( ictxt, nprow, npcol, myrow, mycol )
191 *
192 * Test the input parameters
193 *
194  info = 0
195  IF( nprow.EQ.-1 ) THEN
196  info = -(700+ctxt_)
197  ELSE
198  CALL chk1mat( m, 1, n, 2, ia, ja, desca, 7, info )
199  IF( info.EQ.0 ) THEN
200  iarow = indxg2p( ia, desca( mb_ ), myrow, desca( rsrc_ ),
201  $ nprow )
202  iacol = indxg2p( ja, desca( nb_ ), mycol, desca( csrc_ ),
203  $ npcol )
204  mpa0 = numroc( m+mod( ia-1, desca( mb_ ) ), desca( mb_ ),
205  $ myrow, iarow, nprow )
206  nqa0 = numroc( n+mod( ja-1, desca( nb_ ) ), desca( nb_ ),
207  $ mycol, iacol, npcol )
208  lwmin = mpa0 + max( 1, nqa0 )
209 *
210  work( 1 ) = dcmplx( dble( lwmin ) )
211  lquery = ( lwork.EQ.-1 )
212  IF( n.GT.m ) THEN
213  info = -2
214  ELSE IF( k.LT.0 .OR. k.GT.n ) THEN
215  info = -3
216  ELSE IF( lwork.LT.lwmin .AND. .NOT.lquery ) THEN
217  info = -10
218  END IF
219  END IF
220  END IF
221  IF( info.NE.0 ) THEN
222  CALL pxerbla( ictxt, 'PZUNG2L', -info )
223  CALL blacs_abort( ictxt, 1 )
224  RETURN
225  ELSE IF( lquery ) THEN
226  RETURN
227  END IF
228 *
229 * Quick return if possible
230 *
231  IF( n.LE.0 )
232  $ RETURN
233 *
234  CALL pb_topget( ictxt, 'Broadcast', 'Rowwise', rowbtop )
235  CALL pb_topget( ictxt, 'Broadcast', 'Columnwise', colbtop )
236  CALL pb_topset( ictxt, 'Broadcast', 'Rowwise', 'I-ring' )
237  CALL pb_topset( ictxt, 'Broadcast', 'Columnwise', ' ' )
238 *
239 * Initialise columns ja:ja+n-k-1 to columns of the unit matrix
240 *
241  CALL pzlaset( 'All', m-n, n-k, zero, zero, a, ia, ja, desca )
242  CALL pzlaset( 'All', n, n-k, zero, one, a, ia+m-n, ja, desca )
243 *
244  tauj = zero
245  nqa0 = max( 1, numroc( ja+n-1, desca( nb_ ), mycol,
246  $ desca( csrc_ ), npcol ) )
247  DO 10 j = ja+n-k, ja+n-1
248 *
249 * Apply H(j) to A(ia:ia+m-n+j-ja,ja:j) from the left
250 *
251  CALL pzelset( a, ia+m-n+j-ja, j, desca, one )
252  CALL pzlarf( 'Left', m-n+j-ja+1, j-ja, a, ia, j, desca, 1, tau,
253  $ a, ia, ja, desca, work )
254 *
255  jj = indxg2l( j, desca( nb_ ), mycol, desca( csrc_ ), npcol )
256  iacol = indxg2p( j, desca( nb_ ), mycol, desca( csrc_ ),
257  $ npcol )
258  IF( mycol.EQ.iacol )
259  $ tauj = tau( min( jj, nqa0 ) )
260  CALL pzscal( m-n+j-ja, -tauj, a, ia, j, desca, 1 )
261  CALL pzelset( a, ia+m-n+j-ja, j, desca, one-tauj )
262 *
263 * Set A(ia+m-n+j-ja+1:ia+m-1,j) to zero
264 *
265  CALL pzlaset( 'All', ja+n-1-j, 1, zero, zero, a, ia+m-n+j-ja+1,
266  $ j, desca )
267 *
268  10 CONTINUE
269 *
270  CALL pb_topset( ictxt, 'Broadcast', 'Rowwise', rowbtop )
271  CALL pb_topset( ictxt, 'Broadcast', 'Columnwise', colbtop )
272 *
273  work( 1 ) = dcmplx( dble( lwmin ) )
274 *
275  RETURN
276 *
277 * End of PZUNG2L
278 *
279  END
max
#define max(A, B)
Definition: pcgemr.c:180
pzlarf
subroutine pzlarf(SIDE, M, N, V, IV, JV, DESCV, INCV, TAU, C, IC, JC, DESCC, WORK)
Definition: pzlarf.f:3
pzlaset
subroutine pzlaset(UPLO, M, N, ALPHA, BETA, A, IA, JA, DESCA)
Definition: pzblastst.f:7509
chk1mat
subroutine chk1mat(MA, MAPOS0, NA, NAPOS0, IA, JA, DESCA, DESCAPOS0, INFO)
Definition: chk1mat.f:3
pzelset
subroutine pzelset(A, IA, JA, DESCA, ALPHA)
Definition: pzelset.f:2
pxerbla
subroutine pxerbla(ICTXT, SRNAME, INFO)
Definition: pxerbla.f:2
min
#define min(A, B)
Definition: pcgemr.c:181
pzung2l
subroutine pzung2l(M, N, K, A, IA, JA, DESCA, TAU, WORK, LWORK, INFO)
Definition: pzung2l.f:3