SCALAPACK 2.2.2
LAPACK: Linear Algebra PACKage
All Classes Files Functions Variables Typedefs Macros
pzludriver.f
Go to the documentation of this file.
1 PROGRAM pzludriver
2*
3* -- ScaLAPACK testing driver (version 1.7) --
4* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
5* and University of California, Berkeley.
6* May 1, 1997
7*
8* Purpose
9* ========
10*
11* PZLUDRIVER is the main test program for the COMPLEX*16
12* SCALAPACK LU routines. This test driver performs an LU factorization
13* and solve. If the input matrix is non-square, only the factorization
14* is performed. Condition estimation and iterative refinement are
15* optionally performed.
16*
17* The program must be driven by a short data file. An annotated
18* example of a data file can be obtained by deleting the first 3
19* characters from the following 18 lines:
20* 'SCALAPACK, Version 2.0, LU factorization input file'
21* 'Intel iPSC/860 hypercube, gamma model.'
22* 'LU.out' output file name (if any)
23* 6 device out
24* 1 number of problems sizes
25* 31 201 values of M
26* 31 201 values of N
27* 1 number of NB's
28* 2 values of NB
29* 1 number of NRHS's
30* 1 values of NRHS
31* 1 number of NBRHS's
32* 1 values of NBRHS
33* 1 number of process grids (ordered pairs of P & Q)
34* 2 1 4 2 3 8 values of P
35* 2 4 1 3 2 1 values of Q
36* 1.0 threshold
37* T (T or F) Test Cond. Est. and Iter. Ref. Routines
38*
39*
40* Internal Parameters
41* ===================
42*
43* TOTMEM INTEGER, default = 2000000
44* TOTMEM is a machine-specific parameter indicating the
45* maximum amount of available memory in bytes.
46* The user should customize TOTMEM to his platform. Remember
47* to leave room in memory for the operating system, the BLACS
48* buffer, etc. For example, on a system with 8 MB of memory
49* per process (e.g., one processor on an Intel iPSC/860), the
50* parameters we use are TOTMEM=6200000 (leaving 1.8 MB for OS,
51* code, BLACS buffer, etc). However, for PVM, we usually set
52* TOTMEM = 2000000. Some experimenting with the maximum value
53* of TOTMEM may be required.
54*
55* INTGSZ INTEGER, default = 4 bytes.
56* ZPLXSZ INTEGER, default = 16 bytes.
57* INTGSZ and ZPLXSZ indicate the length in bytes on the
58* given platform for an integer and a double precision
59* complex.
60* MEM COMPLEX*16 array, dimension ( TOTMEM / ZPLXSZ )
61*
62* All arrays used by SCALAPACK routines are allocated from
63* this array and referenced by pointers. The integer IPA,
64* for example, is a pointer to the starting element of MEM for
65* the matrix A.
66*
67* =====================================================================
68*
69* .. Parameters ..
70 INTEGER block_cyclic_2d, csrc_, ctxt_, dlen_, dtype_,
71 $ lld_, mb_, m_, nb_, n_, rsrc_
72 parameter( block_cyclic_2d = 1, dlen_ = 9, dtype_ = 1,
73 $ ctxt_ = 2, m_ = 3, n_ = 4, mb_ = 5, nb_ = 6,
74 $ rsrc_ = 7, csrc_ = 8, lld_ = 9 )
75 INTEGER intgsz, dblesz, memsiz, ntests, totmem, zplxsz
76 DOUBLE PRECISION zero
77 COMPLEX*16 padval
78 parameter( intgsz = 4, dblesz = 8, totmem = 8000000,
79 $ zplxsz = 16, memsiz = totmem / zplxsz,
80 $ ntests = 20,
81 $ padval = ( -9923.0d+0, -9923.0d+0 ),
82 $ zero = 0.0d+0 )
83* ..
84* .. Local Scalars ..
85 LOGICAL check, est
86 CHARACTER*6 passed
87 CHARACTER*80 outfile
88 INTEGER hh, i, iam, iaseed, ibseed, ictxt, imidpad,
89 $ info, ipa, ipa0, ipb, ipb0, ipberr, ipferr,
90 $ ipostpad, ippiv, iprepad, ipw, ipw2, j, k,
91 $ kfail, kk, kpass, kskip, ktests, lcm, lcmq,
92 $ lipiv, lrwork, lwork, lw2, m, maxmn,
93 $ minmn, mp, mycol, myrhs, myrow, n, nb, nbrhs,
94 $ ngrids, nmat, nnb, nnbr, nnr, nout, np, npcol,
95 $ nprocs, nprow, nq, nrhs, worksiz
96 REAL thresh
97 DOUBLE PRECISION anorm, anorm1, fresid, nops, rcond,
98 $ sresid, sresid2, tmflops
99* ..
100* .. Local Arrays ..
101 INTEGER desca( dlen_ ), descb( dlen_ ), ierr( 1 ),
102 $ mval( ntests ), nbrval( ntests ),
103 $ nbval( ntests ), nrval( ntests ),
104 $ nval( ntests ), pval( ntests ),
105 $ qval( ntests )
106 DOUBLE PRECISION ctime( 2 ), wtime( 2 )
107 COMPLEX*16 mem( memsiz )
108* ..
109* .. External Subroutines ..
110 EXTERNAL blacs_barrier, blacs_exit, blacs_get,
111 $ blacs_gridexit, blacs_gridinfo, blacs_gridinit,
112 $ blacs_pinfo, descinit, igsum2d, pzchekpad,
117* ..
118* .. External Functions ..
119 INTEGER iceil, ilcm, numroc
120 DOUBLE PRECISION pzlange
121 EXTERNAL iceil, ilcm, numroc, pzlange
122* ..
123* .. Intrinsic Functions ..
124 INTRINSIC dble, max, min
125* ..
126* .. Data Statements ..
127 DATA kfail, kpass, kskip, ktests / 4*0 /
128* ..
129* .. Executable Statements ..
130*
131* Get starting information
132*
133 CALL blacs_pinfo( iam, nprocs )
134 iaseed = 100
135 ibseed = 200
136 CALL pzluinfo( outfile, nout, nmat, mval, nval, ntests, nnb,
137 $ nbval, ntests, nnr, nrval, ntests, nnbr, nbrval,
138 $ ntests, ngrids, pval, ntests, qval, ntests, thresh,
139 $ est, mem, iam, nprocs )
140 check = ( thresh.GE.0.0e+0 )
141*
142* Print headings
143*
144 IF( iam.EQ.0 ) THEN
145 WRITE( nout, fmt = * )
146 WRITE( nout, fmt = 9995 )
147 WRITE( nout, fmt = 9994 )
148 WRITE( nout, fmt = * )
149 END IF
150*
151* Loop over different process grids
152*
153 DO 50 i = 1, ngrids
154*
155 nprow = pval( i )
156 npcol = qval( i )
157*
158* Make sure grid information is correct
159*
160 ierr( 1 ) = 0
161 IF( nprow.LT.1 ) THEN
162 IF( iam.EQ.0 )
163 $ WRITE( nout, fmt = 9999 ) 'GRID', 'nprow', nprow
164 ierr( 1 ) = 1
165 ELSE IF( npcol.LT.1 ) THEN
166 IF( iam.EQ.0 )
167 $ WRITE( nout, fmt = 9999 ) 'GRID', 'npcol', npcol
168 ierr( 1 ) = 1
169 ELSE IF( nprow*npcol.GT.nprocs ) THEN
170 IF( iam.EQ.0 )
171 $ WRITE( nout, fmt = 9998 ) nprow*npcol, nprocs
172 ierr( 1 ) = 1
173 END IF
174*
175 IF( ierr( 1 ).GT.0 ) THEN
176 IF( iam.EQ.0 )
177 $ WRITE( nout, fmt = 9997 ) 'grid'
178 kskip = kskip + 1
179 GO TO 50
180 END IF
181*
182* Define process grid
183*
184 CALL blacs_get( -1, 0, ictxt )
185 CALL blacs_gridinit( ictxt, 'Row-major', nprow, npcol )
186 CALL blacs_gridinfo( ictxt, nprow, npcol, myrow, mycol )
187*
188* Go to bottom of process grid loop if this case doesn't use my
189* process
190*
191 IF( myrow.GE.nprow .OR. mycol.GE.npcol )
192 $ GO TO 50
193*
194 DO 40 j = 1, nmat
195*
196 m = mval( j )
197 n = nval( j )
198*
199* Make sure matrix information is correct
200*
201 ierr( 1 ) = 0
202 IF( m.LT.1 ) THEN
203 IF( iam.EQ.0 )
204 $ WRITE( nout, fmt = 9999 ) 'MATRIX', 'M', m
205 ierr( 1 ) = 1
206 ELSE IF( n.LT.1 ) THEN
207 IF( iam.EQ.0 )
208 $ WRITE( nout, fmt = 9999 ) 'MATRIX', 'N', n
209 ierr( 1 ) = 1
210 END IF
211*
212* Check all processes for an error
213*
214 CALL igsum2d( ictxt, 'All', ' ', 1, 1, ierr, 1, -1, 0 )
215*
216 IF( ierr( 1 ).GT.0 ) THEN
217 IF( iam.EQ.0 )
218 $ WRITE( nout, fmt = 9997 ) 'matrix'
219 kskip = kskip + 1
220 GO TO 40
221 END IF
222*
223 DO 30 k = 1, nnb
224*
225 nb = nbval( k )
226*
227* Make sure nb is legal
228*
229 ierr( 1 ) = 0
230 IF( nb.LT.1 ) THEN
231 ierr( 1 ) = 1
232 IF( iam.EQ.0 )
233 $ WRITE( nout, fmt = 9999 ) 'NB', 'NB', nb
234 END IF
235*
236* Check all processes for an error
237*
238 CALL igsum2d( ictxt, 'All', ' ', 1, 1, ierr, 1, -1, 0 )
239*
240 IF( ierr( 1 ).GT.0 ) THEN
241 IF( iam.EQ.0 )
242 $ WRITE( nout, fmt = 9997 ) 'NB'
243 kskip = kskip + 1
244 GO TO 30
245 END IF
246*
247* Padding constants
248*
249 mp = numroc( m, nb, myrow, 0, nprow )
250 np = numroc( n, nb, myrow, 0, nprow )
251 nq = numroc( n, nb, mycol, 0, npcol )
252 IF( check ) THEN
253 iprepad = max( nb, mp )
254 imidpad = nb
255 ipostpad = max( nb, nq )
256 ELSE
257 iprepad = 0
258 imidpad = 0
259 ipostpad = 0
260 END IF
261*
262* Initialize the array descriptor for the matrix A
263*
264 CALL descinit( desca, m, n, nb, nb, 0, 0, ictxt,
265 $ max( 1, mp )+imidpad, ierr( 1 ) )
266*
267* Check all processes for an error
268*
269 CALL igsum2d( ictxt, 'All', ' ', 1, 1, ierr, 1, -1, 0 )
270*
271 IF( ierr( 1 ).LT.0 ) THEN
272 IF( iam.EQ.0 )
273 $ WRITE( nout, fmt = 9997 ) 'descriptor'
274 kskip = kskip + 1
275 GO TO 30
276 END IF
277*
278* Assign pointers into MEM for SCALAPACK arrays, A is
279* allocated starting at position MEM( IPREPAD+1 )
280*
281 ipa = iprepad+1
282 IF( est .AND. m.EQ.n ) THEN
283 ipa0 = ipa + desca( lld_ )*nq + ipostpad + iprepad
284 ippiv = ipa0 + desca( lld_ )*nq + ipostpad + iprepad
285 ELSE
286 ippiv = ipa + desca( lld_ )*nq + ipostpad + iprepad
287 END IF
288 lipiv = iceil( intgsz*( mp+nb ), zplxsz )
289 ipw = ippiv + lipiv + ipostpad + iprepad
290*
291 IF( check ) THEN
292*
293* Calculate the amount of workspace required by the
294* checking routines PZLANGE, PZGETRRV, and
295* PZLAFCHK
296*
297 worksiz = max( 2, nq )
298*
299 worksiz = max( worksiz, mp*desca( nb_ )+
300 $ nq*desca( mb_ ) )
301*
302 worksiz = max( worksiz, mp * desca( nb_ ) )
303*
304 worksiz = worksiz + ipostpad
305*
306 ELSE
307*
308 worksiz = ipostpad
309*
310 END IF
311*
312* Check for adequate memory for problem size
313*
314 ierr( 1 ) = 0
315 IF( ipw+worksiz.GT.memsiz ) THEN
316 IF( iam.EQ.0 )
317 $ WRITE( nout, fmt = 9996 ) 'factorization',
318 $ ( ipw+worksiz )*zplxsz
319 ierr( 1 ) = 1
320 END IF
321*
322* Check all processes for an error
323*
324 CALL igsum2d( ictxt, 'All', ' ', 1, 1, ierr, 1, -1, 0 )
325*
326 IF( ierr( 1 ).GT.0 ) THEN
327 IF( iam.EQ.0 )
328 $ WRITE( nout, fmt = 9997 ) 'MEMORY'
329 kskip = kskip + 1
330 GO TO 30
331 END IF
332*
333* Generate matrix A of Ax = b
334*
335 CALL pzmatgen( ictxt, 'No transpose', 'No transpose',
336 $ desca( m_ ), desca( n_ ), desca( mb_ ),
337 $ desca( nb_ ), mem( ipa ), desca( lld_ ),
338 $ desca( rsrc_ ), desca( csrc_ ), iaseed, 0,
339 $ mp, 0, nq, myrow, mycol, nprow, npcol )
340*
341* Calculate inf-norm of A for residual error-checking
342*
343 IF( check ) THEN
344 CALL pzfillpad( ictxt, mp, nq, mem( ipa-iprepad ),
345 $ desca( lld_ ), iprepad, ipostpad,
346 $ padval )
347 CALL pzfillpad( ictxt, lipiv, 1, mem( ippiv-iprepad ),
348 $ lipiv, iprepad, ipostpad, padval )
349 CALL pzfillpad( ictxt, worksiz-ipostpad, 1,
350 $ mem( ipw-iprepad ), worksiz-ipostpad,
351 $ iprepad, ipostpad, padval )
352 anorm = pzlange( 'I', m, n, mem( ipa ), 1, 1, desca,
353 $ mem( ipw ) )
354 anorm1 = pzlange( '1', m, n, mem( ipa ), 1, 1, desca,
355 $ mem( ipw ) )
356 CALL pzchekpad( ictxt, 'PZLANGE', mp, nq,
357 $ mem( ipa-iprepad ), desca( lld_ ),
358 $ iprepad, ipostpad, padval )
359 CALL pzchekpad( ictxt, 'PZLANGE', worksiz-ipostpad,
360 $ 1, mem( ipw-iprepad ),
361 $ worksiz-ipostpad, iprepad, ipostpad,
362 $ padval )
363 END IF
364*
365 IF( est .AND. m.EQ.n ) THEN
366 CALL pzmatgen( ictxt, 'No transpose', 'No transpose',
367 $ desca( m_ ), desca( n_ ), desca( mb_ ),
368 $ desca( nb_ ), mem( ipa0 ),
369 $ desca( lld_ ), desca( rsrc_ ),
370 $ desca( csrc_ ), iaseed, 0, mp, 0, nq,
371 $ myrow, mycol, nprow, npcol )
372 IF( check )
373 $ CALL pzfillpad( ictxt, mp, nq, mem( ipa0-iprepad ),
374 $ desca( lld_ ), iprepad, ipostpad,
375 $ padval )
376 END IF
377*
378 CALL slboot()
379 CALL blacs_barrier( ictxt, 'All' )
380 CALL sltimer( 1 )
381*
382* Perform LU factorization
383*
384 CALL pzgetrf( m, n, mem( ipa ), 1, 1, desca,
385 $ mem( ippiv ), info )
386*
387 CALL sltimer( 1 )
388*
389 IF( info.NE.0 ) THEN
390 IF( iam.EQ.0 )
391 $ WRITE( nout, fmt = * ) 'PZGETRF INFO=', info
392 kfail = kfail + 1
393 rcond = zero
394 GO TO 30
395 END IF
396*
397 IF( check ) THEN
398*
399* Check for memory overwrite in LU factorization
400*
401 CALL pzchekpad( ictxt, 'PZGETRF', mp, nq,
402 $ mem( ipa-iprepad ), desca( lld_ ),
403 $ iprepad, ipostpad, padval )
404 CALL pzchekpad( ictxt, 'PZGETRF', lipiv, 1,
405 $ mem( ippiv-iprepad ), lipiv, iprepad,
406 $ ipostpad, padval )
407 END IF
408*
409 IF( m.NE.n ) THEN
410*
411* For non-square matrices, factorization only
412*
413 nrhs = 0
414 nbrhs = 0
415*
416 IF( check ) THEN
417*
418* Compute FRESID = ||A - P*L*U|| / (||A|| * N * eps)
419*
420 CALL pzgetrrv( m, n, mem( ipa ), 1, 1, desca,
421 $ mem( ippiv ), mem( ipw ) )
422 CALL pzlafchk( 'No', 'No', m, n, mem( ipa ), 1, 1,
423 $ desca, iaseed, anorm, fresid,
424 $ mem( ipw ) )
425*
426* Check for memory overwrite
427*
428 CALL pzchekpad( ictxt, 'PZGETRRV', mp, nq,
429 $ mem( ipa-iprepad ), desca( lld_ ),
430 $ iprepad, ipostpad, padval )
431 CALL pzchekpad( ictxt, 'PZGETRRV', lipiv, 1,
432 $ mem( ippiv-iprepad ), lipiv,
433 $ iprepad, ipostpad, padval )
434 CALL pzchekpad( ictxt, 'PZGETRRV',
435 $ worksiz-ipostpad, 1,
436 $ mem( ipw-iprepad ),
437 $ worksiz-ipostpad, iprepad,
438 $ ipostpad, padval )
439*
440* Test residual and detect NaN result
441*
442 IF( ( fresid.LE.thresh ) .AND.
443 $ ( (fresid-fresid).EQ.0.0d+0 ) ) THEN
444 kpass = kpass + 1
445 passed = 'PASSED'
446 ELSE
447 kfail = kfail + 1
448 passed = 'FAILED'
449 IF( myrow.EQ.0 .AND. mycol.EQ.0 )
450 $ WRITE( nout, fmt = 9986 ) fresid
451 END IF
452*
453 ELSE
454*
455* Don't perform the checking, only timing
456*
457 kpass = kpass + 1
458 fresid = fresid - fresid
459 passed = 'BYPASS'
460*
461 END IF
462*
463* Gather maximum of all CPU and WALL clock timings
464*
465 CALL slcombine( ictxt, 'All', '>', 'W', 1, 1,
466 $ wtime )
467 CALL slcombine( ictxt, 'All', '>', 'C', 1, 1,
468 $ ctime )
469*
470* Print results
471*
472 IF( myrow.EQ.0 .AND. mycol.EQ.0 ) THEN
473*
474 maxmn = max( m, n )
475 minmn = min( m, n )
476*
477* 4 M N^2 - 4/3 N^3 + 2 M N - 3 N^2 flops for LU
478* factorization M >= N
479*
480 nops = 4.0d+0*dble(maxmn)*(dble(minmn)**2) -
481 $ (4.0d+0 / 3.0d+0)*( dble( minmn )**3 ) +
482 $ (2.0d+0)*dble( maxmn )*dble( minmn ) -
483 $ (3.0d+0)*( dble( minmn )**2 )
484*
485* Calculate total megaflops -- factorization only,
486* -- for WALL and CPU time, and print output
487*
488* Print WALL time if machine supports it
489*
490 IF( wtime( 1 ).GT.0.0d+0 ) THEN
491 tmflops = nops / ( wtime( 1 ) * 1.0d+6 )
492 ELSE
493 tmflops = 0.0d+0
494 END IF
495*
496 wtime( 2 ) = 0.0d+0
497 IF( wtime( 1 ).GE.0.0d+0 )
498 $ WRITE( nout, fmt = 9993 ) 'WALL', m, n, nb,
499 $ nrhs, nbrhs, nprow, npcol, wtime( 1 ),
500 $ wtime( 2 ), tmflops, passed
501*
502* Print CPU time if machine supports it
503*
504 IF( ctime( 1 ).GT.0.0d+0 ) THEN
505 tmflops = nops / ( ctime( 1 ) * 1.0d+6 )
506 ELSE
507 tmflops = 0.0d+0
508 END IF
509*
510 ctime( 2 ) = 0.0d+0
511 IF( ctime( 1 ).GE.0.0d+0 )
512 $ WRITE( nout, fmt = 9993 ) 'CPU ', m, n, nb,
513 $ nrhs, nbrhs, nprow, npcol, ctime( 1 ),
514 $ ctime( 2 ), tmflops, passed
515 END IF
516*
517 ELSE
518*
519* If M = N
520*
521 IF( est ) THEN
522*
523* Calculate workspace required for PZGECON
524*
525 lwork = max( 1, 2*np ) +
526 $ max( 2, desca( nb_ )*
527 $ max( 1, iceil( nprow-1, npcol ) ),
528 $ nq + desca( nb_ )*
529 $ max( 1, iceil( npcol-1, nprow ) ) )
530 ipw2 = ipw + lwork + ipostpad + iprepad
531 lrwork = max( 1, 2*nq )
532 lw2 = iceil( lrwork*dblesz, zplxsz ) + ipostpad
533*
534 ierr( 1 ) = 0
535 IF( ipw2+lw2.GT.memsiz ) THEN
536 IF( iam.EQ.0 )
537 $ WRITE( nout, fmt = 9996 )'cond est',
538 $ ( ipw2+lw2 )*zplxsz
539 ierr( 1 ) = 1
540 END IF
541*
542* Check all processes for an error
543*
544 CALL igsum2d( ictxt, 'All', ' ', 1, 1, ierr, 1,
545 $ -1, 0 )
546*
547 IF( ierr( 1 ).GT.0 ) THEN
548 IF( iam.EQ.0 )
549 $ WRITE( nout, fmt = 9997 ) 'MEMORY'
550 kskip = kskip + 1
551 GO TO 30
552 END IF
553*
554 IF( check ) THEN
555 CALL pzfillpad( ictxt, lwork, 1,
556 $ mem( ipw-iprepad ), lwork,
557 $ iprepad, ipostpad, padval )
558 CALL pzfillpad( ictxt, lw2-ipostpad, 1,
559 $ mem( ipw2-iprepad ),
560 $ lw2-ipostpad, iprepad,
561 $ ipostpad, padval )
562 END IF
563*
564* Compute condition number of the matrix
565*
566 CALL pzgecon( '1', n, mem( ipa ), 1, 1, desca,
567 $ anorm1, rcond, mem( ipw ), lwork,
568 $ mem( ipw2 ), lrwork, info )
569*
570 IF( check ) THEN
571 CALL pzchekpad( ictxt, 'PZGECON', np, nq,
572 $ mem( ipa-iprepad ),
573 $ desca( lld_ ), iprepad,
574 $ ipostpad, padval )
575 CALL pzchekpad( ictxt, 'PZGECON', lwork, 1,
576 $ mem( ipw-iprepad ), lwork,
577 $ iprepad, ipostpad, padval )
578 CALL pzchekpad( ictxt, 'PZGECON',
579 $ lw2-ipostpad, 1,
580 $ mem( ipw2-iprepad ),
581 $ lw2-ipostpad, iprepad,
582 $ ipostpad, padval )
583 END IF
584 END IF
585*
586* Loop over the different values for NRHS
587*
588 DO 20 hh = 1, nnr
589*
590 nrhs = nrval( hh )
591*
592 DO 10 kk = 1, nnbr
593*
594 nbrhs = nbrval( kk )
595*
596* Initialize Array Descriptor for rhs
597*
598 CALL descinit( descb, n, nrhs, nb, nbrhs, 0, 0,
599 $ ictxt, max( 1, np )+imidpad,
600 $ ierr( 1 ) )
601*
602* Check all processes for an error
603*
604 CALL igsum2d( ictxt, 'All', ' ', 1, 1, ierr, 1,
605 $ -1, 0 )
606*
607 IF( ierr( 1 ).LT.0 ) THEN
608 IF( iam.EQ.0 )
609 $ WRITE( nout, fmt = 9997 ) 'descriptor'
610 kskip = kskip + 1
611 GO TO 10
612 END IF
613*
614* move IPW to allow room for RHS
615*
616 myrhs = numroc( descb( n_ ), descb( nb_ ),
617 $ mycol, descb( csrc_ ), npcol )
618 ipb = ipw
619*
620 IF( est ) THEN
621 ipb0 = ipb + descb( lld_ )*myrhs + ipostpad +
622 $ iprepad
623 ipferr = ipb0 + descb( lld_ )*myrhs +
624 $ ipostpad + iprepad
625 ipberr = myrhs + ipferr + ipostpad + iprepad
626 ipw = myrhs + ipberr + ipostpad + iprepad
627 ELSE
628 ipw = ipb + descb( lld_ )*myrhs + ipostpad +
629 $ iprepad
630 END IF
631*
632* Set worksiz: routines requiring most workspace
633* is PZLASCHK
634*
635 IF( check ) THEN
636 lcm = ilcm( nprow, npcol )
637 lcmq = lcm / npcol
638 worksiz = max( worksiz-ipostpad,
639 $ nq * nbrhs + np * nbrhs +
640 $ max( max( nq*nb, 2*nbrhs ),
641 $ nbrhs * numroc( numroc(n,nb,0,0,npcol),nb,
642 $ 0,0,lcmq ) ) )
643 worksiz = ipostpad + worksiz
644 ELSE
645 worksiz = ipostpad
646 END IF
647*
648 ierr( 1 ) = 0
649 IF( ipw+worksiz.GT.memsiz ) THEN
650 IF( iam.EQ.0 )
651 $ WRITE( nout, fmt = 9996 )'solve',
652 $ ( ipw+worksiz )*zplxsz
653 ierr( 1 ) = 1
654 END IF
655*
656* Check all processes for an error
657*
658 CALL igsum2d( ictxt, 'All', ' ', 1, 1, ierr, 1,
659 $ -1, 0 )
660*
661 IF( ierr( 1 ).GT.0 ) THEN
662 IF( iam.EQ.0 )
663 $ WRITE( nout, fmt = 9997 ) 'MEMORY'
664 kskip = kskip + 1
665 GO TO 10
666 END IF
667*
668* Generate RHS
669*
670 CALL pzmatgen( ictxt, 'No', 'No', descb( m_ ),
671 $ descb( n_ ), descb( mb_ ),
672 $ descb( nb_ ), mem( ipb ),
673 $ descb( lld_ ), descb( rsrc_ ),
674 $ descb( csrc_ ), ibseed, 0, np, 0,
675 $ myrhs, myrow, mycol, nprow,
676 $ npcol )
677*
678 IF( check )
679 $ CALL pzfillpad( ictxt, np, myrhs,
680 $ mem( ipb-iprepad ),
681 $ descb( lld_ ), iprepad,
682 $ ipostpad, padval )
683*
684 IF( est ) THEN
685 CALL pzmatgen( ictxt, 'No', 'No',
686 $ descb( m_ ), descb( n_ ),
687 $ descb( mb_ ), descb( nb_ ),
688 $ mem( ipb0 ), descb( lld_ ),
689 $ descb( rsrc_ ),
690 $ descb( csrc_ ), ibseed, 0, np,
691 $ 0, myrhs, myrow, mycol, nprow,
692 $ npcol )
693 IF( check ) THEN
694 CALL pzfillpad( ictxt, np, myrhs,
695 $ mem( ipb0-iprepad ),
696 $ descb( lld_ ), iprepad,
697 $ ipostpad, padval )
698 CALL pzfillpad( ictxt, 1, myrhs,
699 $ mem( ipferr-iprepad ), 1,
700 $ iprepad, ipostpad,
701 $ padval )
702 CALL pzfillpad( ictxt, 1, myrhs,
703 $ mem( ipberr-iprepad ), 1,
704 $ iprepad, ipostpad,
705 $ padval )
706 END IF
707 END IF
708*
709 CALL blacs_barrier( ictxt, 'All' )
710 CALL sltimer( 2 )
711*
712* Solve linear sytem via LU factorization
713*
714 CALL pzgetrs( 'No', n, nrhs, mem( ipa ), 1, 1,
715 $ desca, mem( ippiv ), mem( ipb ),
716 $ 1, 1, descb, info )
717*
718 CALL sltimer( 2 )
719*
720 IF( check ) THEN
721*
722* check for memory overwrite
723*
724 CALL pzchekpad( ictxt, 'PZGETRS', np, nq,
725 $ mem( ipa-iprepad ),
726 $ desca( lld_ ), iprepad,
727 $ ipostpad, padval )
728 CALL pzchekpad( ictxt, 'PZGETRS', lipiv, 1,
729 $ mem( ippiv-iprepad ), lipiv,
730 $ iprepad, ipostpad, padval )
731 CALL pzchekpad( ictxt, 'PZGETRS', np,
732 $ myrhs, mem( ipb-iprepad ),
733 $ descb( lld_ ), iprepad,
734 $ ipostpad, padval )
735*
736 CALL pzfillpad( ictxt, worksiz-ipostpad,
737 $ 1, mem( ipw-iprepad ),
738 $ worksiz-ipostpad, iprepad,
739 $ ipostpad, padval )
740*
741* check the solution to rhs
742*
743 CALL pzlaschk( 'No', 'N', n, nrhs,
744 $ mem( ipb ), 1, 1, descb,
745 $ iaseed, 1, 1, desca, ibseed,
746 $ anorm, sresid, mem( ipw ) )
747*
748 IF( iam.EQ.0 .AND. sresid.GT.thresh )
749 $ WRITE( nout, fmt = 9985 ) sresid
750*
751* check for memory overwrite
752*
753 CALL pzchekpad( ictxt, 'PZLASCHK', np,
754 $ myrhs, mem( ipb-iprepad ),
755 $ descb( lld_ ), iprepad,
756 $ ipostpad, padval )
757 CALL pzchekpad( ictxt, 'PZLASCHK',
758 $ worksiz-ipostpad, 1,
759 $ mem( ipw-iprepad ),
760 $ worksiz-ipostpad,
761 $ iprepad, ipostpad, padval )
762*
763* The second test is a NaN trap
764*
765 IF( sresid.LE.thresh .AND.
766 $ ( sresid-sresid ).EQ.0.0d+0 ) THEN
767 kpass = kpass + 1
768 passed = 'PASSED'
769 ELSE
770 kfail = kfail + 1
771 passed = 'FAILED'
772 END IF
773 ELSE
774 kpass = kpass + 1
775 sresid = sresid - sresid
776 passed = 'BYPASS'
777 END IF
778*
779 IF( est ) THEN
780*
781* Calculate workspace required for PZGERFS
782*
783 lwork = max( 1, 2*np )
784 ipw2 = ipw + lwork + ipostpad + iprepad
785 lrwork = max( 1, np )
786 lw2 = iceil( lrwork*dblesz, zplxsz ) +
787 $ ipostpad
788*
789 ierr( 1 ) = 0
790 IF( ipw2+lw2.GT.memsiz ) THEN
791 IF( iam.EQ.0 )
792 $ WRITE( nout, fmt = 9996 )
793 $ 'iter ref', ( ipw2+lw2 )*zplxsz
794 ierr( 1 ) = 1
795 END IF
796*
797* Check all processes for an error
798*
799 CALL igsum2d( ictxt, 'All', ' ', 1, 1,
800 $ ierr, 1, -1, 0 )
801*
802 IF( ierr( 1 ).GT.0 ) THEN
803 IF( iam.EQ.0 )
804 $ WRITE( nout, fmt = 9997 )
805 $ 'MEMORY'
806 kskip = kskip + 1
807 GO TO 10
808 END IF
809*
810 IF( check ) THEN
811 CALL pzfillpad( ictxt, lwork, 1,
812 $ mem( ipw-iprepad ),
813 $ lwork, iprepad, ipostpad,
814 $ padval )
815 CALL pzfillpad( ictxt, lw2-ipostpad, 1,
816 $ mem( ipw2-iprepad ),
817 $ lw2-ipostpad, iprepad,
818 $ ipostpad, padval )
819 END IF
820*
821* Use iterative refinement to improve the
822* computed solution
823*
824 CALL pzgerfs( 'No', n, nrhs, mem( ipa0 ), 1,
825 $ 1, desca, mem( ipa ), 1, 1,
826 $ desca, mem( ippiv ),
827 $ mem( ipb0 ), 1, 1, descb,
828 $ mem( ipb ), 1, 1, descb,
829 $ mem( ipferr ), mem( ipberr ),
830 $ mem( ipw ), lwork, mem( ipw2 ),
831 $ lrwork, info )
832*
833 IF( check ) THEN
834 CALL pzchekpad( ictxt, 'PZGERFS', np,
835 $ nq, mem( ipa0-iprepad ),
836 $ desca( lld_ ), iprepad,
837 $ ipostpad, padval )
838 CALL pzchekpad( ictxt, 'PZGERFS', np,
839 $ nq, mem( ipa-iprepad ),
840 $ desca( lld_ ), iprepad,
841 $ ipostpad, padval )
842 CALL pzchekpad( ictxt, 'PZGERFS', lipiv,
843 $ 1, mem( ippiv-iprepad ),
844 $ lipiv, iprepad,
845 $ ipostpad, padval )
846 CALL pzchekpad( ictxt, 'PZGERFS', np,
847 $ myrhs, mem( ipb-iprepad ),
848 $ descb( lld_ ), iprepad,
849 $ ipostpad, padval )
850 CALL pzchekpad( ictxt, 'PZGERFS', np,
851 $ myrhs,
852 $ mem( ipb0-iprepad ),
853 $ descb( lld_ ), iprepad,
854 $ ipostpad, padval )
855 CALL pzchekpad( ictxt, 'PZGERFS', 1,
856 $ myrhs,
857 $ mem( ipferr-iprepad ), 1,
858 $ iprepad, ipostpad,
859 $ padval )
860 CALL pzchekpad( ictxt, 'PZGERFS', 1,
861 $ myrhs,
862 $ mem( ipberr-iprepad ), 1,
863 $ iprepad, ipostpad,
864 $ padval )
865 CALL pzchekpad( ictxt, 'PZGERFS', lwork,
866 $ 1, mem( ipw-iprepad ),
867 $ lwork, iprepad, ipostpad,
868 $ padval )
869 CALL pzchekpad( ictxt, 'PZGERFS',
870 $ lw2-ipostpad, 1,
871 $ mem( ipw2-iprepad ),
872 $ lw2-ipostpad, iprepad,
873 $ ipostpad, padval )
874*
875 CALL pzfillpad( ictxt, worksiz-ipostpad,
876 $ 1, mem( ipw-iprepad ),
877 $ worksiz-ipostpad, iprepad,
878 $ ipostpad, padval )
879*
880* check the solution to rhs
881*
882 CALL pzlaschk( 'No', 'N', n, nrhs,
883 $ mem( ipb ), 1, 1, descb,
884 $ iaseed, 1, 1, desca,
885 $ ibseed, anorm, sresid2,
886 $ mem( ipw ) )
887*
888 IF( iam.EQ.0 .AND. sresid2.GT.thresh )
889 $ WRITE( nout, fmt = 9985 ) sresid2
890*
891* check for memory overwrite
892*
893 CALL pzchekpad( ictxt, 'PZLASCHK', np,
894 $ myrhs, mem( ipb-iprepad ),
895 $ descb( lld_ ), iprepad,
896 $ ipostpad, padval )
897 CALL pzchekpad( ictxt, 'PZLASCHK',
898 $ worksiz-ipostpad, 1,
899 $ mem( ipw-iprepad ),
900 $ worksiz-ipostpad, iprepad,
901 $ ipostpad, padval )
902 END IF
903 END IF
904*
905* Gather max. of all CPU and WALL clock timings
906*
907 CALL slcombine( ictxt, 'All', '>', 'W', 2, 1,
908 $ wtime )
909 CALL slcombine( ictxt, 'All', '>', 'C', 2, 1,
910 $ ctime )
911*
912* Print results
913*
914 IF( myrow.EQ.0 .AND. mycol.EQ.0 ) THEN
915*
916* 8/3 N^3 - N^2 flops for LU factorization
917*
918 nops = (8.0d+0/3.0d+0)*( dble(n)**3 ) -
919 $ dble(n)**2
920*
921* nrhs * 8 N^2 flops for LU solve.
922*
923 nops = nops + 8.0d+0*(dble(n)**2)*dble(nrhs)
924*
925* Calculate total megaflops -- factorization
926* and solve -- for WALL and CPU time, and print
927* output
928*
929* Print WALL time if machine supports it
930*
931 IF( wtime( 1 ) + wtime( 2 ) .GT. 0.0d+0 )
932 $ THEN
933 tmflops = nops /
934 $ ( ( wtime( 1 )+wtime( 2 ) ) * 1.0d+6 )
935 ELSE
936 tmflops = 0.0d+0
937 END IF
938*
939* Print WALL time if supported
940*
941 IF( wtime( 2 ).GE.0.0d+0 )
942 $ WRITE( nout, fmt = 9993 ) 'WALL', m, n,
943 $ nb, nrhs, nbrhs, nprow, npcol,
944 $ wtime( 1 ), wtime( 2 ), tmflops,
945 $ passed
946*
947* Print CPU time if supported
948*
949 IF( ctime( 1 )+ctime( 2 ).GT.0.0d+0 )
950 $ THEN
951 tmflops = nops /
952 $ ( ( ctime( 1 )+ctime( 2 ) ) * 1.0d+6 )
953 ELSE
954 tmflops = 0.0d+0
955 END IF
956*
957 IF( ctime( 2 ).GE.0.0d+0 )
958 $ WRITE( nout, fmt = 9993 ) 'CPU ', m, n,
959 $ nb, nrhs, nbrhs, nprow, npcol,
960 $ ctime( 1 ), ctime( 2 ), tmflops,
961 $ passed
962 END IF
963 10 CONTINUE
964 20 CONTINUE
965*
966 IF( check.AND.( sresid.GT.thresh ) ) THEN
967*
968* Compute fresid = ||A - P*L*U|| / (||A|| * N * eps)
969*
970 CALL pzgetrrv( m, n, mem( ipa ), 1, 1, desca,
971 $ mem( ippiv ), mem( ipw ) )
972 CALL pzlafchk( 'No', 'No', m, n, mem( ipa ), 1,
973 $ 1, desca, iaseed, anorm, fresid,
974 $ mem( ipw ) )
975*
976* Check for memory overwrite
977*
978 CALL pzchekpad( ictxt, 'PZGETRRV', np, nq,
979 $ mem( ipa-iprepad ), desca( lld_ ),
980 $ iprepad, ipostpad, padval )
981 CALL pzchekpad( ictxt, 'PZGETRRV', lipiv,
982 $ 1, mem( ippiv-iprepad ), lipiv,
983 $ iprepad, ipostpad, padval )
984 CALL pzchekpad( ictxt, 'PZGETRRV',
985 $ worksiz-ipostpad, 1,
986 $ mem( ipw-iprepad ),
987 $ worksiz-ipostpad, iprepad,
988 $ ipostpad, padval )
989*
990 IF( myrow.EQ.0 .AND. mycol.EQ.0 )
991 $ WRITE( nout, fmt = 9986 ) fresid
992 END IF
993 END IF
994 30 CONTINUE
995 40 CONTINUE
996 CALL blacs_gridexit( ictxt )
997 50 CONTINUE
998*
999* Print ending messages and close output file
1000*
1001 60 CONTINUE
1002 IF( iam.EQ.0 ) THEN
1003 ktests = kpass + kfail + kskip
1004 WRITE( nout, fmt = * )
1005 WRITE( nout, fmt = 9992 ) ktests
1006 IF( check ) THEN
1007 WRITE( nout, fmt = 9991 ) kpass
1008 WRITE( nout, fmt = 9989 ) kfail
1009 ELSE
1010 WRITE( nout, fmt = 9990 ) kpass
1011 END IF
1012 WRITE( nout, fmt = 9988 ) kskip
1013 WRITE( nout, fmt = * )
1014 WRITE( nout, fmt = * )
1015 WRITE( nout, fmt = 9987 )
1016 IF( nout.NE.6 .AND. nout.NE.0 )
1017 $ CLOSE( nout )
1018 END IF
1019*
1020 CALL blacs_exit( 0 )
1021*
1022 9999 FORMAT( 'ILLEGAL ', a6, ': ', a5, ' = ', i3,
1023 $ '; It should be at least 1' )
1024 9998 FORMAT( 'ILLEGAL GRID: nprow*npcol = ', i4, '. It can be at most',
1025 $ i4 )
1026 9997 FORMAT( 'Bad ', a6, ' parameters: going on to next test case.' )
1027 9996 FORMAT( 'Unable to perform ', a, ': need TOTMEM of at least',
1028 $ i11 )
1029 9995 FORMAT( 'TIME M N NB NRHS NBRHS P Q LU Time ',
1030 $ 'Sol Time MFLOPS CHECK' )
1031 9994 FORMAT( '---- ----- ----- --- ---- ----- ---- ---- -------- ',
1032 $ '-------- -------- ------' )
1033 9993 FORMAT( a4, 1x, i5, 1x, i5, 1x, i3, 1x, i5, 1x, i4, 1x, i4, 1x,
1034 $ i4, 1x, f8.2, 1x, f8.2, 1x, f8.2, 1x, a6 )
1035 9992 FORMAT( 'Finished ', i6, ' tests, with the following results:' )
1036 9991 FORMAT( i5, ' tests completed and passed residual checks.' )
1037 9990 FORMAT( i5, ' tests completed without checking.' )
1038 9989 FORMAT( i5, ' tests completed and failed residual checks.' )
1039 9988 FORMAT( i5, ' tests skipped because of illegal input values.' )
1040 9987 FORMAT( 'END OF TESTS.' )
1041 9986 FORMAT( '||A - P*L*U|| / (||A|| * N * eps) = ', g25.7 )
1042 9985 FORMAT( '||Ax-b||/(||x||*||A||*eps*N) ', f25.7 )
1043*
1044 stop
1045*
1046* End of PZLUDRIVER
1047*
1048 END
subroutine pzlafchk(aform, diag, m, n, a, ia, ja, desca, iaseed, anorm, fresid, work)
Definition pzlafchk.f:3
subroutine pzmatgen(ictxt, aform, diag, m, n, mb, nb, a, lda, iarow, iacol, iseed, iroff, irnum, icoff, icnum, myrow, mycol, nprow, npcol)
Definition pzmatgen.f:4
subroutine descinit(desc, m, n, mb, nb, irsrc, icsrc, ictxt, lld, info)
Definition descinit.f:3
integer function iceil(inum, idenom)
Definition iceil.f:2
integer function ilcm(m, n)
Definition ilcm.f:2
integer function numroc(n, nb, iproc, isrcproc, nprocs)
Definition numroc.f:2
#define max(A, B)
Definition pcgemr.c:180
#define min(A, B)
Definition pcgemr.c:181
subroutine pzchekpad(ictxt, mess, m, n, a, lda, ipre, ipost, chkval)
Definition pzchekpad.f:3
subroutine pzfillpad(ictxt, m, n, a, lda, ipre, ipost, chkval)
Definition pzfillpad.f:2
subroutine pzgecon(norm, n, a, ia, ja, desca, anorm, rcond, work, lwork, rwork, lrwork, info)
Definition pzgecon.f:3
subroutine pzgerfs(trans, n, nrhs, a, ia, ja, desca, af, iaf, jaf, descaf, ipiv, b, ib, jb, descb, x, ix, jx, descx, ferr, berr, work, lwork, rwork, lrwork, info)
Definition pzgerfs.f:5
subroutine pzgetrf(m, n, a, ia, ja, desca, ipiv, info)
Definition pzgetrf.f:2
subroutine pzgetrrv(m, n, a, ia, ja, desca, ipiv, work)
Definition pzgetrrv.f:2
subroutine pzgetrs(trans, n, nrhs, a, ia, ja, desca, ipiv, b, ib, jb, descb, info)
Definition pzgetrs.f:3
double precision function pzlange(norm, m, n, a, ia, ja, desca, work)
Definition pzlange.f:3
subroutine pzlaschk(symm, diag, n, nrhs, x, ix, jx, descx, iaseed, ia, ja, desca, ibseed, anorm, resid, work)
Definition pzlaschk.f:4
program pzludriver
Definition pzludriver.f:1
subroutine pzluinfo(summry, nout, nmat, mval, nval, ldnval, nnb, nbval, ldnbval, nnr, nrval, ldnrval, nnbr, nbrval, ldnbrval, ngrids, pval, ldpval, qval, ldqval, thresh, est, work, iam, nprocs)
Definition pzluinfo.f:5
subroutine slboot()
Definition sltimer.f:2
subroutine sltimer(i)
Definition sltimer.f:47
subroutine slcombine(ictxt, scope, op, timetype, n, ibeg, times)
Definition sltimer.f:267