ScaLAPACK 2.1  2.1
ScaLAPACK: Scalable Linear Algebra PACKage
pcgelqrv.f
Go to the documentation of this file.
1  SUBROUTINE pcgelqrv( M, N, A, IA, JA, DESCA, TAU, WORK )
2 *
3 * -- ScaLAPACK routine (version 1.7) --
4 * University of Tennessee, Knoxville, Oak Ridge National Laboratory,
5 * and University of California, Berkeley.
6 * May 28, 2001
7 *
8 * .. Scalar Arguments ..
9  INTEGER IA, JA, M, N
10 * ..
11 * .. Array Arguments ..
12  INTEGER DESCA( * )
13  COMPLEX A( * ), TAU( * ), WORK( * )
14 * ..
15 *
16 * Purpose
17 * =======
18 *
19 * PCGELQRV computes sub( A ) = A(IA:IA+M-1,JA:JA+N-1) from L, Q
20 * computed by PCGELQF.
21 *
22 * Notes
23 * =====
24 *
25 * Each global data object is described by an associated description
26 * vector. This vector stores the information required to establish
27 * the mapping between an object element and its corresponding process
28 * and memory location.
29 *
30 * Let A be a generic term for any 2D block cyclicly distributed array.
31 * Such a global array has an associated description vector DESCA.
32 * In the following comments, the character _ should be read as
33 * "of the global array".
34 *
35 * NOTATION STORED IN EXPLANATION
36 * --------------- -------------- --------------------------------------
37 * DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
38 * DTYPE_A = 1.
39 * CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
40 * the BLACS process grid A is distribu-
41 * ted over. The context itself is glo-
42 * bal, but the handle (the integer
43 * value) may vary.
44 * M_A (global) DESCA( M_ ) The number of rows in the global
45 * array A.
46 * N_A (global) DESCA( N_ ) The number of columns in the global
47 * array A.
48 * MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
49 * the rows of the array.
50 * NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
51 * the columns of the array.
52 * RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
53 * row of the array A is distributed.
54 * CSRC_A (global) DESCA( CSRC_ ) The process column over which the
55 * first column of the array A is
56 * distributed.
57 * LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
58 * array. LLD_A >= MAX(1,LOCr(M_A)).
59 *
60 * Let K be the number of rows or columns of a distributed matrix,
61 * and assume that its process grid has dimension p x q.
62 * LOCr( K ) denotes the number of elements of K that a process
63 * would receive if K were distributed over the p processes of its
64 * process column.
65 * Similarly, LOCc( K ) denotes the number of elements of K that a
66 * process would receive if K were distributed over the q processes of
67 * its process row.
68 * The values of LOCr() and LOCc() may be determined via a call to the
69 * ScaLAPACK tool function, NUMROC:
70 * LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
71 * LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
72 * An upper bound for these quantities may be computed by:
73 * LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
74 * LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
75 *
76 * Arguments
77 * =========
78 *
79 * M (global input) INTEGER
80 * The number of rows to be operated on, i.e. the number of rows
81 * of the distributed submatrix sub( A ). M >= 0.
82 *
83 * N (global input) INTEGER
84 * The number of columns to be operated on, i.e. the number of
85 * columns of the distributed submatrix sub( A ). N >= 0.
86 *
87 * A (local input/local output) COMPLEX pointer into the
88 * local memory to an array of dimension (LLD_A, LOCc(JA+N-1)).
89 * On entry, sub( A ) contains the the factors L and Q computed
90 * by PCGELQF. On exit, the original matrix is restored.
91 *
92 * IA (global input) INTEGER
93 * The row index in the global array A indicating the first
94 * row of sub( A ).
95 *
96 * JA (global input) INTEGER
97 * The column index in the global array A indicating the
98 * first column of sub( A ).
99 *
100 * DESCA (global and local input) INTEGER array of dimension DLEN_.
101 * The array descriptor for the distributed matrix A.
102 *
103 * TAU (local input) COMPLEX, array, dimension
104 * LOCr(IA+MIN(M,N)-1). This array contains the scalar factors
105 * TAU of the elementary reflectors computed by PCGELQF. TAU
106 * is tied to the distributed matrix A.
107 *
108 * WORK (local workspace) COMPLEX array, dimension
109 * LWORK = MB_A * ( Mp0 + 2*Nq0 + MB_A ), where
110 * Mp0 = NUMROC( M+IROFF, MB_A, MYROW, IAROW, NPROW ) * NB_A,
111 * Nq0 = NUMROC( N+ICOFF, NB_A, MYCOL, IACOL, NPCOL ) * MB_A,
112 * IROFF = MOD( IA-1, MB_A ), ICOFF = MOD( JA-1, NB_A ),
113 * IAROW = INDXG2P( IA, DESCA( MB_ ), MYROW, DESCA( RSRC_ ),
114 * NPROW ),
115 * IACOL = INDXG2P( JA, DESCA( NB_ ), MYCOL, DESCA( CSRC_ ),
116 * NPCOL ),
117 * and NUMROC, INDXG2P are ScaLAPACK tool functions.
118 *
119 * =====================================================================
120 *
121 * .. Parameters ..
122  INTEGER BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
123  $ LLD_, MB_, M_, NB_, N_, RSRC_
124  parameter( block_cyclic_2d = 1, dlen_ = 9, dtype_ = 1,
125  $ ctxt_ = 2, m_ = 3, n_ = 4, mb_ = 5, nb_ = 6,
126  $ rsrc_ = 7, csrc_ = 8, lld_ = 9 )
127  COMPLEX ONE, ZERO
128  parameter( one = ( 1.0e+0, 0.0e+0 ),
129  $ zero = ( 0.0e+0, 0.0e+0 ) )
130 * ..
131 * .. Local Scalars ..
132  CHARACTER COLBTOP, ROWBTOP
133  INTEGER I, IACOL, IAROW, IB, ICOFF, ICTXT, IIA, IL, IN,
134  $ IPT, IPV, IPW, J, JJA, JV, K, MYCOL, MYROW,
135  $ NPCOL, NPROW, NQ
136 * ..
137 * .. Local Arrays ..
138  INTEGER DESCV( DLEN_ )
139 * ..
140 * .. External Subroutines ..
141  EXTERNAL blacs_gridinfo, descset, infog2l, pclacpy,
143 * ..
144 * .. External Functions ..
145  INTEGER ICEIL, NUMROC
146  EXTERNAL iceil, numroc
147 * ..
148 * .. Intrinsic Functions ..
149  INTRINSIC max, min, mod
150 * ..
151 * .. Executable Statements ..
152 *
153 * Get grid parameters
154 *
155  ictxt = desca( ctxt_ )
156  CALL blacs_gridinfo( ictxt, nprow, npcol, myrow, mycol )
157 *
158  k = min( m, n )
159  in = min( iceil( ia, desca( mb_ ) ) * desca( mb_ ), ia+k-1 )
160  il = max( ( (ia+k-2) / desca( mb_ ) ) * desca( mb_ ) + 1, ia )
161 *
162  icoff = mod( ja-1, desca( nb_ ) )
163  CALL infog2l( il, ja, desca, nprow, npcol, myrow, mycol, iia, jja,
164  $ iarow, iacol )
165  nq = numroc( n+icoff, desca( nb_ ), mycol, iacol, npcol )
166  ipv = 1
167  ipt = ipv + nq * desca( mb_ )
168  ipw = ipt + desca( mb_ ) * desca( mb_ )
169  CALL pb_topget( ictxt, 'Broadcast', 'Rowwise', rowbtop )
170  CALL pb_topget( ictxt, 'Broadcast', 'Columnwise', colbtop )
171  CALL pb_topset( ictxt, 'Broadcast', 'Rowwise', ' ' )
172  CALL pb_topset( ictxt, 'Broadcast', 'Columnwise', 'D-ring' )
173 *
174  CALL descset( descv, desca( mb_ ), n + icoff, desca( mb_ ),
175  $ desca( nb_ ), iarow, iacol, ictxt, desca( mb_ ) )
176 *
177  DO 10 i = il, in+1, -desca( mb_ )
178  ib = min( ia+k-i, desca( mb_ ) )
179  j = ja + i - ia
180  jv = 1 + i - ia + icoff
181 *
182 * Compute upper triangular matrix T
183 *
184  CALL pclarft( 'Forward', 'Rowwise', n-j+ja, ib, a, i, j, desca,
185  $ tau, work( ipt ), work( ipw ) )
186 *
187 * Copy Householder vectors into workspace
188 *
189  CALL pclacpy( 'Upper', ib, n-j+ja, a, i, j, desca, work( ipv ),
190  $ 1, jv, descv )
191  CALL pclaset( 'Lower', ib, n-j+ja, zero, one, work( ipv ), 1,
192  $ jv, descv )
193 *
194 * Zeroes the strict upper triangular part of sub( A ) to get
195 * block column of L
196 *
197  CALL pclaset( 'Upper', ib, n-j+ja-1, zero, zero, a, i, j+1,
198  $ desca )
199 *
200 * Apply block Householder transformation
201 *
202  CALL pclarfb( 'Right', 'Conjugate transpose', 'Forward',
203  $ 'Rowwise', m-i+ia, n-j+ja, ib, work( ipv ), 1,
204  $ jv, descv, work( ipt ), a, i, j, desca,
205  $ work( ipw ) )
206 *
207  descv( rsrc_ ) = mod( descv( rsrc_ ) + nprow - 1, nprow )
208 *
209  10 CONTINUE
210 *
211 * Handle first block separately
212 *
213  ib = in - ia + 1
214 *
215 * Compute upper triangular matrix T
216 *
217  CALL pclarft( 'Forward', 'Rowwise', n, ib, a, ia, ja, desca, tau,
218  $ work( ipt ), work( ipw ) )
219 *
220 * Copy Householder vectors into workspace
221 *
222  CALL pclacpy( 'Upper', ib, n, a, ia, ja, desca, work( ipv ), 1,
223  $ icoff+1, descv )
224  CALL pclaset( 'Lower', ib, n, zero, one, work, 1, icoff+1, descv )
225 *
226 * Zeroes the strict upper triangular part of sub( A ) to get
227 * block column of L
228 *
229  CALL pclaset( 'Upper', ib, n-1, zero, zero, a, ia, ja+1, desca )
230 *
231 * Apply block Householder transformation
232 *
233  CALL pclarfb( 'Right', 'Conjugate transpose', 'Forward',
234  $ 'Rowwise', m, n, ib, work( ipv ), 1, icoff+1, descv,
235  $ work( ipt ), a, ia, ja, desca, work( ipw ) )
236 *
237  CALL pb_topset( ictxt, 'Broadcast', 'Rowwise', rowbtop )
238  CALL pb_topset( ictxt, 'Broadcast', 'Columnwise', colbtop )
239 *
240  RETURN
241 *
242 * End of PCGELQRV
243 *
244  END
max
#define max(A, B)
Definition: pcgemr.c:180
infog2l
subroutine infog2l(GRINDX, GCINDX, DESC, NPROW, NPCOL, MYROW, MYCOL, LRINDX, LCINDX, RSRC, CSRC)
Definition: infog2l.f:3
pcgelqrv
subroutine pcgelqrv(M, N, A, IA, JA, DESCA, TAU, WORK)
Definition: pcgelqrv.f:2
pclarfb
subroutine pclarfb(SIDE, TRANS, DIRECT, STOREV, M, N, K, V, IV, JV, DESCV, T, C, IC, JC, DESCC, WORK)
Definition: pclarfb.f:3
descset
subroutine descset(DESC, M, N, MB, NB, IRSRC, ICSRC, ICTXT, LLD)
Definition: descset.f:3
pclaset
subroutine pclaset(UPLO, M, N, ALPHA, BETA, A, IA, JA, DESCA)
Definition: pcblastst.f:7508
pclacpy
subroutine pclacpy(UPLO, M, N, A, IA, JA, DESCA, B, IB, JB, DESCB)
Definition: pclacpy.f:3
pclarft
subroutine pclarft(DIRECT, STOREV, N, K, V, IV, JV, DESCV, TAU, T, WORK)
Definition: pclarft.f:3
min
#define min(A, B)
Definition: pcgemr.c:181