SCALAPACK 2.2.2
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
pcungql.f
Go to the documentation of this file.
1 SUBROUTINE pcungql( M, N, K, A, IA, JA, DESCA, TAU, WORK, LWORK,
2 $ INFO )
3*
4* -- ScaLAPACK routine (version 1.7) --
5* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
6* and University of California, Berkeley.
7* May 25, 2001
8*
9* .. Scalar Arguments ..
10 INTEGER IA, INFO, JA, K, LWORK, M, N
11* ..
12* .. Array Arguments ..
13 INTEGER DESCA( * )
14 COMPLEX A( * ), TAU( * ), WORK( * )
15* ..
16*
17* Purpose
18* =======
19*
20* PCUNGQL generates an M-by-N complex distributed matrix Q denoting
21* A(IA:IA+M-1,JA:JA+N-1) with orthonormal columns, which is defined as
22* the last N columns of a product of K elementary reflectors of order M
23*
24* Q = H(k) . . . H(2) H(1)
25*
26* as returned by PCGEQLF.
27*
28* Notes
29* =====
30*
31* Each global data object is described by an associated description
32* vector. This vector stores the information required to establish
33* the mapping between an object element and its corresponding process
34* and memory location.
35*
36* Let A be a generic term for any 2D block cyclicly distributed array.
37* Such a global array has an associated description vector DESCA.
38* In the following comments, the character _ should be read as
39* "of the global array".
40*
41* NOTATION STORED IN EXPLANATION
42* --------------- -------------- --------------------------------------
43* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
44* DTYPE_A = 1.
45* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
46* the BLACS process grid A is distribu-
47* ted over. The context itself is glo-
48* bal, but the handle (the integer
49* value) may vary.
50* M_A (global) DESCA( M_ ) The number of rows in the global
51* array A.
52* N_A (global) DESCA( N_ ) The number of columns in the global
53* array A.
54* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
55* the rows of the array.
56* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
57* the columns of the array.
58* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
59* row of the array A is distributed.
60* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
61* first column of the array A is
62* distributed.
63* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
64* array. LLD_A >= MAX(1,LOCr(M_A)).
65*
66* Let K be the number of rows or columns of a distributed matrix,
67* and assume that its process grid has dimension p x q.
68* LOCr( K ) denotes the number of elements of K that a process
69* would receive if K were distributed over the p processes of its
70* process column.
71* Similarly, LOCc( K ) denotes the number of elements of K that a
72* process would receive if K were distributed over the q processes of
73* its process row.
74* The values of LOCr() and LOCc() may be determined via a call to the
75* ScaLAPACK tool function, NUMROC:
76* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
77* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
78* An upper bound for these quantities may be computed by:
79* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
80* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
81*
82* Arguments
83* =========
84*
85* M (global input) INTEGER
86* The number of rows to be operated on i.e the number of rows
87* of the distributed submatrix Q. M >= 0.
88*
89* N (global input) INTEGER
90* The number of columns to be operated on i.e the number of
91* columns of the distributed submatrix Q. M >= N >= 0.
92*
93* K (global input) INTEGER
94* The number of elementary reflectors whose product defines the
95* matrix Q. N >= K >= 0.
96*
97* A (local input/local output) COMPLEX pointer into the
98* local memory to an array of dimension (LLD_A,LOCc(JA+N-1)).
99* On entry, the j-th column must contain the vector which
100* defines the elementary reflector H(j), JA+N-K <= j <= JA+N-1,
101* as returned by PCGEQLF in the K columns of its distributed
102* matrix argument A(IA:*,JA+N-K:JA+N-1). On exit, this array
103* contains the local pieces of the M-by-N distributed matrix Q.
104*
105* IA (global input) INTEGER
106* The row index in the global array A indicating the first
107* row of sub( A ).
108*
109* JA (global input) INTEGER
110* The column index in the global array A indicating the
111* first column of sub( A ).
112*
113* DESCA (global and local input) INTEGER array of dimension DLEN_.
114* The array descriptor for the distributed matrix A.
115*
116* TAU (local input) COMPLEX, array, dimension LOCc(JA+N-1)
117* This array contains the scalar factors TAU(j) of the
118* elementary reflectors H(j) as returned by PCGEQLF.
119* TAU is tied to the distributed matrix A.
120*
121* WORK (local workspace/local output) COMPLEX array,
122* dimension (LWORK)
123* On exit, WORK(1) returns the minimal and optimal LWORK.
124*
125* LWORK (local or global input) INTEGER
126* The dimension of the array WORK.
127* LWORK is local input and must be at least
128* LWORK >= NB_A * ( NqA0 + MpA0 + NB_A ), where
129*
130* IROFFA = MOD( IA-1, MB_A ), ICOFFA = MOD( JA-1, NB_A ),
131* IAROW = INDXG2P( IA, MB_A, MYROW, RSRC_A, NPROW ),
132* IACOL = INDXG2P( JA, NB_A, MYCOL, CSRC_A, NPCOL ),
133* MpA0 = NUMROC( M+IROFFA, MB_A, MYROW, IAROW, NPROW ),
134* NqA0 = NUMROC( N+ICOFFA, NB_A, MYCOL, IACOL, NPCOL ),
135*
136* INDXG2P and NUMROC are ScaLAPACK tool functions;
137* MYROW, MYCOL, NPROW and NPCOL can be determined by calling
138* the subroutine BLACS_GRIDINFO.
139*
140* If LWORK = -1, then LWORK is global input and a workspace
141* query is assumed; the routine only calculates the minimum
142* and optimal size for all work arrays. Each of these
143* values is returned in the first entry of the corresponding
144* work array, and no error message is issued by PXERBLA.
145*
146*
147* INFO (global output) INTEGER
148* = 0: successful exit
149* < 0: If the i-th argument is an array and the j-entry had
150* an illegal value, then INFO = -(i*100+j), if the i-th
151* argument is a scalar and had an illegal value, then
152* INFO = -i.
153*
154* =====================================================================
155*
156* .. Parameters ..
157 INTEGER BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
158 $ lld_, mb_, m_, nb_, n_, rsrc_
159 parameter( block_cyclic_2d = 1, dlen_ = 9, dtype_ = 1,
160 $ ctxt_ = 2, m_ = 3, n_ = 4, mb_ = 5, nb_ = 6,
161 $ rsrc_ = 7, csrc_ = 8, lld_ = 9 )
162 COMPLEX ZERO
163 parameter( zero = ( 0.0e+0, 0.0e+0 ) )
164* ..
165* .. Local Scalars ..
166 LOGICAL LQUERY
167 CHARACTER COLBTOP, ROWBTOP
168 INTEGER IACOL, IAROW, ICTXT, IINFO, IPW, J, JB, JN,
169 $ lwmin, mpa0, mycol, myrow, npcol, nprow, nqa0
170* ..
171* .. Local Arrays ..
172 INTEGER IDUM1( 2 ), IDUM2( 2 )
173* ..
174* .. External Subroutines ..
175 EXTERNAL blacs_gridinfo, chk1mat, pchk1mat, pclarfb,
176 $ pclarft, pclaset, pcung2l, pb_topget,
177 $ pb_topset, pxerbla
178* ..
179* .. External Functions ..
180 INTEGER ICEIL, INDXG2P, NUMROC
181 EXTERNAL iceil, indxg2p, numroc
182* ..
183* .. Intrinsic Functions ..
184 INTRINSIC cmplx, min, mod, real
185* ..
186* .. Executable Statements ..
187*
188* Get grid parameters
189*
190 ictxt = desca( ctxt_ )
191 CALL blacs_gridinfo( ictxt, nprow, npcol, myrow, mycol )
192*
193* Test the input parameters
194*
195 info = 0
196 IF( nprow.EQ.-1 ) THEN
197 info = -(700+ctxt_)
198 ELSE
199 CALL chk1mat( m, 1, n, 2, ia, ja, desca, 7, info )
200 IF( info.EQ.0 ) THEN
201 iarow = indxg2p( ia, desca( mb_ ), myrow, desca( rsrc_ ),
202 $ nprow )
203 iacol = indxg2p( ja, desca( nb_ ), mycol, desca( csrc_ ),
204 $ npcol )
205 mpa0 = numroc( m+mod( ia-1, desca( mb_ ) ), desca( mb_ ),
206 $ myrow, iarow, nprow )
207 nqa0 = numroc( n+mod( ja-1, desca( nb_ ) ), desca( nb_ ),
208 $ mycol, iacol, npcol )
209 lwmin = desca( nb_ ) * ( mpa0 + nqa0 + desca( nb_ ) )
210*
211 work( 1 ) = cmplx( real( lwmin ) )
212 lquery = ( lwork.EQ.-1 )
213 IF( n.GT.m ) THEN
214 info = -2
215 ELSE IF( k.LT.0 .OR. k.GT.n ) THEN
216 info = -3
217 ELSE IF( lwork.LT.lwmin .AND. .NOT.lquery ) THEN
218 info = -10
219 END IF
220 END IF
221 idum1( 1 ) = k
222 idum2( 1 ) = 3
223 IF( lwork.EQ.-1 ) THEN
224 idum1( 2 ) = -1
225 ELSE
226 idum1( 2 ) = 1
227 END IF
228 idum2( 2 ) = 10
229 CALL pchk1mat( m, 1, n, 2, ia, ja, desca, 7, 2, idum1, idum2,
230 $ info )
231 END IF
232 IF( info.NE.0 ) THEN
233 CALL pxerbla( ictxt, 'PCUNGQL', -info )
234 RETURN
235 ELSE IF( lquery ) THEN
236 RETURN
237 END IF
238*
239* Quick return if possible
240*
241 IF( n.LE.0 )
242 $ RETURN
243*
244 ipw = desca( nb_ )*desca( nb_ ) + 1
245 jn = min( iceil( ja+n-k, desca( nb_ ) )*desca( nb_ ), ja+n-1 )
246 CALL pb_topget( ictxt, 'Broadcast', 'Rowwise', rowbtop )
247 CALL pb_topget( ictxt, 'Broadcast', 'Columnwise', colbtop )
248 CALL pb_topset( ictxt, 'Broadcast', 'Rowwise', 'I-ring' )
249 CALL pb_topset( ictxt, 'Broadcast', 'Columnwise', ' ' )
250*
251* Set A(ia+m-n+jn-ja+1:ia-m+1,ja:jn) to zero.
252*
253 CALL pclaset( 'All', n-jn+ja-1, jn-ja+1, zero, zero, a,
254 $ ia+m-n+jn-ja+1, ja, desca )
255*
256* Use unblocked code for the first or only block.
257*
258 CALL pcung2l( m-n+jn-ja+1, jn-ja+1, jn-ja-n+k+1, a, ia, ja, desca,
259 $ tau, work, lwork, iinfo )
260*
261* Use blocked code
262*
263 DO 10 j = jn+1, ja+n-1, desca( nb_ )
264 jb = min( ja+n-j, desca( nb_ ) )
265*
266* Form the triangular factor of the block reflector
267* H = H(j+jb-1) . . . H(j+1) H(j)
268*
269 CALL pclarft( 'Backward', 'Columnwise', m-n+j+jb-ja, jb,
270 $ a, ia, j, desca, tau, work, work( ipw ) )
271*
272* Apply H to A(ia:ia+m-n+j+jb-ja-1,ja:j-1) from the left
273*
274 CALL pclarfb( 'Left', 'No transpose', 'Backward',
275 $ 'Columnwise', m-n+j+jb-ja, j-ja, jb, a, ia,
276 $ j, desca, work, a, ia, ja, desca, work( ipw ) )
277*
278* Apply H to rows ia:m-k+i+ib-1 of current block
279*
280 CALL pcung2l( m-n+j+jb-ja, jb, jb, a, ia, j, desca, tau, work,
281 $ lwork, iinfo )
282*
283* Set rows ia+m-n+j+jb-ja:ia+m-1,j:j+jb-1 of current block to
284* zero
285*
286 CALL pclaset( 'All', n-j-jb+ja, jb, zero, zero, a,
287 $ ia+m-n+j+jb-ja, j, desca )
288*
289 10 CONTINUE
290*
291 CALL pb_topset( ictxt, 'Broadcast', 'Rowwise', rowbtop )
292 CALL pb_topset( ictxt, 'Broadcast', 'Columnwise', colbtop )
293*
294 work( 1 ) = cmplx( real( lwmin ) )
295*
296 RETURN
297*
298* End of PCUNGQL
299*
300 END
float cmplx[2]
Definition pblas.h:136
subroutine chk1mat(ma, mapos0, na, napos0, ia, ja, desca, descapos0, info)
Definition chk1mat.f:3
subroutine pclaset(uplo, m, n, alpha, beta, a, ia, ja, desca)
Definition pcblastst.f:7508
#define min(A, B)
Definition pcgemr.c:181
subroutine pchk1mat(ma, mapos0, na, napos0, ia, ja, desca, descapos0, nextra, ex, expos, info)
Definition pchkxmat.f:3
subroutine pclarfb(side, trans, direct, storev, m, n, k, v, iv, jv, descv, t, c, ic, jc, descc, work)
Definition pclarfb.f:3
subroutine pclarft(direct, storev, n, k, v, iv, jv, descv, tau, t, work)
Definition pclarft.f:3
subroutine pcung2l(m, n, k, a, ia, ja, desca, tau, work, lwork, info)
Definition pcung2l.f:3
subroutine pcungql(m, n, k, a, ia, ja, desca, tau, work, lwork, info)
Definition pcungql.f:3
subroutine pxerbla(ictxt, srname, info)
Definition pxerbla.f:2