SCALAPACK 2.2.2
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
pcung2l.f
Go to the documentation of this file.
1 SUBROUTINE pcung2l( M, N, K, A, IA, JA, DESCA, TAU, WORK, LWORK,
2 $ INFO )
3*
4* -- ScaLAPACK routine (version 1.7) --
5* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
6* and University of California, Berkeley.
7* May 25, 2001
8*
9* .. Scalar Arguments ..
10 INTEGER IA, INFO, JA, K, LWORK, M, N
11* ..
12* .. Array Arguments ..
13 INTEGER DESCA( * )
14 COMPLEX A( * ), TAU( * ), WORK( * )
15* ..
16*
17* Purpose
18* =======
19*
20* PCUNG2L generates an M-by-N complex distributed matrix Q denoting
21* A(IA:IA+M-1,JA:JA+N-1) with orthonormal columns, which is defined as
22* the last N columns of a product of K elementary reflectors of order M
23*
24* Q = H(k) . . . H(2) H(1)
25*
26* as returned by PCGEQLF.
27*
28* Notes
29* =====
30*
31* Each global data object is described by an associated description
32* vector. This vector stores the information required to establish
33* the mapping between an object element and its corresponding process
34* and memory location.
35*
36* Let A be a generic term for any 2D block cyclicly distributed array.
37* Such a global array has an associated description vector DESCA.
38* In the following comments, the character _ should be read as
39* "of the global array".
40*
41* NOTATION STORED IN EXPLANATION
42* --------------- -------------- --------------------------------------
43* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
44* DTYPE_A = 1.
45* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
46* the BLACS process grid A is distribu-
47* ted over. The context itself is glo-
48* bal, but the handle (the integer
49* value) may vary.
50* M_A (global) DESCA( M_ ) The number of rows in the global
51* array A.
52* N_A (global) DESCA( N_ ) The number of columns in the global
53* array A.
54* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
55* the rows of the array.
56* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
57* the columns of the array.
58* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
59* row of the array A is distributed.
60* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
61* first column of the array A is
62* distributed.
63* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
64* array. LLD_A >= MAX(1,LOCr(M_A)).
65*
66* Let K be the number of rows or columns of a distributed matrix,
67* and assume that its process grid has dimension p x q.
68* LOCr( K ) denotes the number of elements of K that a process
69* would receive if K were distributed over the p processes of its
70* process column.
71* Similarly, LOCc( K ) denotes the number of elements of K that a
72* process would receive if K were distributed over the q processes of
73* its process row.
74* The values of LOCr() and LOCc() may be determined via a call to the
75* ScaLAPACK tool function, NUMROC:
76* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
77* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
78* An upper bound for these quantities may be computed by:
79* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
80* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
81*
82* Arguments
83* =========
84*
85* M (global input) INTEGER
86* The number of rows to be operated on i.e the number of rows
87* of the distributed submatrix Q. M >= 0.
88*
89* N (global input) INTEGER
90* The number of columns to be operated on i.e the number of
91* columns of the distributed submatrix Q. M >= N >= 0.
92*
93* K (global input) INTEGER
94* The number of elementary reflectors whose product defines the
95* matrix Q. N >= K >= 0.
96*
97* A (local input/local output) COMPLEX pointer into the
98* local memory to an array of dimension (LLD_A,LOCc(JA+N-1)).
99* On entry, the j-th column must contain the vector which
100* defines the elementary reflector H(j), JA+N-K <= j <= JA+N-1,
101* as returned by PCGEQLF in the K columns of its distributed
102* matrix argument A(IA:*,JA+N-K:JA+N-1). On exit, this array
103* contains the local pieces of the M-by-N distributed matrix Q.
104*
105* IA (global input) INTEGER
106* The row index in the global array A indicating the first
107* row of sub( A ).
108*
109* JA (global input) INTEGER
110* The column index in the global array A indicating the
111* first column of sub( A ).
112*
113* DESCA (global and local input) INTEGER array of dimension DLEN_.
114* The array descriptor for the distributed matrix A.
115*
116* TAU (local input) COMPLEX, array, dimension LOCc(JA+N-1)
117* This array contains the scalar factors TAU(j) of the
118* elementary reflectors H(j) as returned by PCGEQLF.
119* TAU is tied to the distributed matrix A.
120*
121* WORK (local workspace/local output) COMPLEX array,
122* dimension (LWORK)
123* On exit, WORK(1) returns the minimal and optimal LWORK.
124*
125* LWORK (local or global input) INTEGER
126* The dimension of the array WORK.
127* LWORK is local input and must be at least
128* LWORK >= MpA0 + MAX( 1, NqA0 ), where
129*
130* IROFFA = MOD( IA-1, MB_A ), ICOFFA = MOD( JA-1, NB_A ),
131* IAROW = INDXG2P( IA, MB_A, MYROW, RSRC_A, NPROW ),
132* IACOL = INDXG2P( JA, NB_A, MYCOL, CSRC_A, NPCOL ),
133* MpA0 = NUMROC( M+IROFFA, MB_A, MYROW, IAROW, NPROW ),
134* NqA0 = NUMROC( N+ICOFFA, NB_A, MYCOL, IACOL, NPCOL ),
135*
136* INDXG2P and NUMROC are ScaLAPACK tool functions;
137* MYROW, MYCOL, NPROW and NPCOL can be determined by calling
138* the subroutine BLACS_GRIDINFO.
139*
140* If LWORK = -1, then LWORK is global input and a workspace
141* query is assumed; the routine only calculates the minimum
142* and optimal size for all work arrays. Each of these
143* values is returned in the first entry of the corresponding
144* work array, and no error message is issued by PXERBLA.
145*
146*
147* INFO (local output) INTEGER
148* = 0: successful exit
149* < 0: If the i-th argument is an array and the j-entry had
150* an illegal value, then INFO = -(i*100+j), if the i-th
151* argument is a scalar and had an illegal value, then
152* INFO = -i.
153*
154* =====================================================================
155*
156* .. Parameters ..
157 INTEGER BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
158 $ lld_, mb_, m_, nb_, n_, rsrc_
159 parameter( block_cyclic_2d = 1, dlen_ = 9, dtype_ = 1,
160 $ ctxt_ = 2, m_ = 3, n_ = 4, mb_ = 5, nb_ = 6,
161 $ rsrc_ = 7, csrc_ = 8, lld_ = 9 )
162 COMPLEX ONE, ZERO
163 parameter( one = ( 1.0e+0, 0.0e+0 ),
164 $ zero = ( 0.0e+0, 0.0e+0 ) )
165* ..
166* .. Local Scalars ..
167 LOGICAL LQUERY
168 CHARACTER COLBTOP, ROWBTOP
169 INTEGER IACOL, IAROW, ICTXT, J, JJ, LWMIN, MPA0, MYCOL,
170 $ myrow, npcol, nprow, nqa0
171 COMPLEX TAUJ
172* ..
173* .. External Subroutines ..
174 EXTERNAL blacs_abort, blacs_gridinfo, chk1mat, pcelset,
175 $ pclarf, pclaset, pcscal, pb_topget,
176 $ pb_topset, pxerbla
177* ..
178* .. External Functions ..
179 INTEGER INDXG2L, INDXG2P, NUMROC
180 EXTERNAL indxg2l, indxg2p, numroc
181* ..
182* .. Intrinsic Functions ..
183 INTRINSIC cmplx, max, min, mod, real
184* ..
185* .. Executable Statements ..
186*
187* Get grid parameters
188*
189 ictxt = desca( ctxt_ )
190 CALL blacs_gridinfo( ictxt, nprow, npcol, myrow, mycol )
191*
192* Test the input parameters
193*
194 info = 0
195 IF( nprow.EQ.-1 ) THEN
196 info = -(700+ctxt_)
197 ELSE
198 CALL chk1mat( m, 1, n, 2, ia, ja, desca, 7, info )
199 IF( info.EQ.0 ) THEN
200 iarow = indxg2p( ia, desca( mb_ ), myrow, desca( rsrc_ ),
201 $ nprow )
202 iacol = indxg2p( ja, desca( nb_ ), mycol, desca( csrc_ ),
203 $ npcol )
204 mpa0 = numroc( m+mod( ia-1, desca( mb_ ) ), desca( mb_ ),
205 $ myrow, iarow, nprow )
206 nqa0 = numroc( n+mod( ja-1, desca( nb_ ) ), desca( nb_ ),
207 $ mycol, iacol, npcol )
208 lwmin = mpa0 + max( 1, nqa0 )
209*
210 work( 1 ) = cmplx( real( lwmin ) )
211 lquery = ( lwork.EQ.-1 )
212 IF( n.GT.m ) THEN
213 info = -2
214 ELSE IF( k.LT.0 .OR. k.GT.n ) THEN
215 info = -3
216 ELSE IF( lwork.LT.lwmin .AND. .NOT.lquery ) THEN
217 info = -10
218 END IF
219 END IF
220 END IF
221 IF( info.NE.0 ) THEN
222 CALL pxerbla( ictxt, 'PCUNG2L', -info )
223 CALL blacs_abort( ictxt, 1 )
224 RETURN
225 ELSE IF( lquery ) THEN
226 RETURN
227 END IF
228*
229* Quick return if possible
230*
231 IF( n.LE.0 )
232 $ RETURN
233*
234 CALL pb_topget( ictxt, 'Broadcast', 'Rowwise', rowbtop )
235 CALL pb_topget( ictxt, 'Broadcast', 'Columnwise', colbtop )
236 CALL pb_topset( ictxt, 'Broadcast', 'Rowwise', 'I-ring' )
237 CALL pb_topset( ictxt, 'Broadcast', 'Columnwise', ' ' )
238*
239* Initialise columns ja:ja+n-k-1 to columns of the unit matrix
240*
241 CALL pclaset( 'All', m-n, n-k, zero, zero, a, ia, ja, desca )
242 CALL pclaset( 'All', n, n-k, zero, one, a, ia+m-n, ja, desca )
243*
244 tauj = zero
245 nqa0 = max( 1, numroc( ja+n-1, desca( nb_ ), mycol,
246 $ desca( csrc_ ), npcol ) )
247 DO 10 j = ja+n-k, ja+n-1
248*
249* Apply H(j) to A(ia:ia+m-n+j-ja,ja:j) from the left
250*
251 CALL pcelset( a, ia+m-n+j-ja, j, desca, one )
252 CALL pclarf( 'Left', m-n+j-ja+1, j-ja, a, ia, j, desca, 1, tau,
253 $ a, ia, ja, desca, work )
254*
255 jj = indxg2l( j, desca( nb_ ), mycol, desca( csrc_ ), npcol )
256 iacol = indxg2p( j, desca( nb_ ), mycol, desca( csrc_ ),
257 $ npcol )
258 IF( mycol.EQ.iacol )
259 $ tauj = tau( min( jj, nqa0 ) )
260 CALL pcscal( m-n+j-ja, -tauj, a, ia, j, desca, 1 )
261 CALL pcelset( a, ia+m-n+j-ja, j, desca, one-tauj )
262*
263* Set A(ia+m-n+j-ja+1:ia+m-1,j) to zero
264*
265 CALL pclaset( 'All', ja+n-1-j, 1, zero, zero, a, ia+m-n+j-ja+1,
266 $ j, desca )
267*
268 10 CONTINUE
269*
270 CALL pb_topset( ictxt, 'Broadcast', 'Rowwise', rowbtop )
271 CALL pb_topset( ictxt, 'Broadcast', 'Columnwise', colbtop )
272*
273 work( 1 ) = cmplx( real( lwmin ) )
274*
275 RETURN
276*
277* End of PCUNG2L
278*
279 END
float cmplx[2]
Definition pblas.h:136
subroutine chk1mat(ma, mapos0, na, napos0, ia, ja, desca, descapos0, info)
Definition chk1mat.f:3
subroutine pclaset(uplo, m, n, alpha, beta, a, ia, ja, desca)
Definition pcblastst.f:7508
subroutine pcelset(a, ia, ja, desca, alpha)
Definition pcelset.f:2
#define max(A, B)
Definition pcgemr.c:180
#define min(A, B)
Definition pcgemr.c:181
subroutine pclarf(side, m, n, v, iv, jv, descv, incv, tau, c, ic, jc, descc, work)
Definition pclarf.f:3
subroutine pcung2l(m, n, k, a, ia, ja, desca, tau, work, lwork, info)
Definition pcung2l.f:3
subroutine pxerbla(ictxt, srname, info)
Definition pxerbla.f:2