next up previous contents index
Next: LA_GGEVX Up: Examples Previous: Example 1 (from Program   Contents   Index

Example 2 (from Program LA_GGEV_EXAMPLE)


\begin{displaymath}
A = \left( \begin{array}{rrrrr}
-2 + 2i &
-9 + 3i &
1 ...
...-8 + i &
5 + -i &
10 -4i &
-4 + 0i
\end{array} \right)
\end{displaymath}


\begin{displaymath}
B = \left( \begin{array}{rrrrr}
-7 + 0i &
5 + i &
4 + ...
...-1 + 4i &
-2 + 3i &
-2 -3i &
-10 -i
\end{array} \right)
\end{displaymath}

Arrays ${\bf A}$and B on entry:

\begin{displaymath}
\begin{array}{c} {\bf A} \\
\begin{array}{\vert rrrrr\ver...
... -1) &
(10, -4)&
(-4, 0) \\
\hline \end{array} \end{array}\end{displaymath}


\begin{displaymath}
\begin{array}{c} {\bf B} \\
\begin{array}{\vert rrrrr\ver...
...3) &
(-2, -3) &
(-10, -1)
\\
\hline \end{array} \end{array}\end{displaymath}

The call:
CALL LA_GGEV( A, B, ALPHA, BETA, VL, VR, INFO )

ALPHA, BETA, INFO, VL and VR on exit:


\begin{displaymath}
\begin{array}{cc} {\bf ALPHA} \\
\begin{array}{\vert ll\v...
...y} \hspace{0.50 cm}
\begin{array}{c} {\bf INFO} = 0 \end{array}\end{displaymath}


\begin{displaymath}\begin{array}{c} {\bf VL} \\
\begin{array}{\vert ll} \hline...
...},~~4.06072 \times 10^{-1}) \\
\hline \end{array} \end{array} \end{displaymath}


\begin{displaymath}\begin{array}{lll\vert} \hline
(~~0,0) & (~~0,0) & (0,0) \\
...
...0^{-1},4.77557 \times 10^{-1}) & (1, 0)\\
\hline \end{array} \end{displaymath}


\begin{displaymath}\begin{array}{c} {\bf VR} \\
\begin{array}{\vert lll} \hlin...
... (~~0.00000~~~~~,~~0.00000) \\
\hline \end{array} \end{array}\end{displaymath}


\begin{displaymath}
\begin{array}{ll\vert} \hline
(9.97417 \times 10^{-2},-3.22...
...0) & (~~7.50905 \times 10^{-1},0.00000) \\
\hline \end{array}\end{displaymath}

The eigenvalues of the problem $A z = \lambda B z$ are:

\begin{displaymath}
\left( \begin{array}{ll}
-2.56692~~~~ & + 4.01547 \times 10^...
...times 10^{-2} & + 1.18506 \times 10^{-1}i
\end{array} \right).
\end{displaymath}

The left generalized eigenvectors are:


\begin{displaymath}\left( \begin{array}{ll}
~~8.44783 \times 10^{-1} & ~~0 \\
~...
...5 \times 10^{-2}+4.06072 \times 10^{-1}i
\end{array} \right.
\end{displaymath}


\begin{displaymath}
\left.
\begin{array}{lll}
~~0 & ~~0 & 0 \\
~~0 & ~~0 & ...
...{-1} + 4.77557 \times 10^{-1}i & 1.00000
\end{array} \right),
\end{displaymath}

The right generalized eigenvectors are:


\begin{displaymath}
\left( \begin{array}{lll}
1.00000+0.00000i & 5.94957 \times...
...0000 \\
0.00000 & 0.00000 & ~~0.00000
\end{array} \right.
\end{displaymath}


\begin{displaymath}
\left. \begin{array}{ll}
9.97417 \times 10^{-2}-3.22876 \tim...
...\\
0.00000 & ~~7.50905 \times 10^{-1}
\end{array} \right).
\end{displaymath}


next up previous contents index
Next: LA_GGEVX Up: Examples Previous: Example 1 (from Program   Contents   Index
Susan Blackford 2001-08-19