next up previous contents index
Next: Example 2 (from Program Up: Examples Previous: Examples   Contents   Index

Example 1 (from Program LA_GGEV_EXAMPLE)

Matrices $A$ and $B$ as in Example 1 for LA_GGES

The call:
CALL LA_GGEV( A, B, VL
=VL, VR=VR )

VL and VR on exit:

\begin{displaymath}\begin{array}{c} {\bf VL} \\ \begin{array}{\vert lllll\vert} ...
...1} & 8.91064 \times 10^{-1} \\
\hline \end{array} \end{array} \end{displaymath}


\begin{displaymath}\begin{array}{cc} {\bf VR} \\ \begin{array}{\vert lllll\vert}...
...} & -2.75044 \times 10^{-1} \\
\hline \end{array} \end{array} \end{displaymath}

The eigenvalues of $A z = \lambda B z$ are given in example 1 for LA_GGES.
The corresponding (generalized) left eigenvectors are:

\begin{displaymath}\left( \begin{array}{lllll}
-3.00652 \times 10^{-1} & \;\;\:...
...7 \times 10^{-1} & 8.91064 \times 10^{-1}
\end{array} \right) \end{displaymath}

The corresponding (generalized) right eigenvectors are:

\begin{displaymath}\left( \begin{array}{lllll}
-2.24853 \times 10^{-1} & \;\;\:...
... \times 10^{-1} & -2.75044 \times 10^{-1}
\end{array} \right) \end{displaymath}



Susan Blackford 2001-08-19