next up previous contents index
Next: Generalized Nonsymmetric Eigenvalue Problems Up: Generalized Symmetric Eigenvalue Problems Previous: Arguments   Contents   Index

Example (from Program LA_SBGVX_EXAMPLE)

The results below are computed with $\epsilon = 1.19209 \times 10^{-7}$.
Matrices $A$ and $B$ are the same as in Example 1 for LA_SBGV.

The call:
CALL LA_SBGVX( A, B, W, Z
=Z, VL=0.0_wp, VU=100.0_wp, M=M, Q=Q )8.2

${\bf W, M}$ and Q on exit:

\begin{displaymath}
\begin{array}{cc} {\bf W} \\
\begin{array}{\vert rrrrr\ve...
...ray}{c} \\ \begin{array}{c} {\bf M} = 3 \end{array} \end{array}\end{displaymath}


\begin{displaymath}
\begin{array}{cc} {\bf Q} \\
\begin{array}{\vert crrrr\ver...
...-1} & 6.26144 \times 10^{-2} \\
\hline \end{array} \end{array}\end{displaymath}

The three eigenvalues in the range $[0,100]$ are:

\begin{displaymath}\left( \begin{array}{lll}
3.37961 \times 10^{-1} & 8.63341 \times 10^{-1} & 1.12617
\end{array} \right). \end{displaymath}

The matrix $Q$ used in the reduction of $A z = \lambda B z$ to tridiagonal form is:

\begin{displaymath}Q = \left( \begin{array}{crrrr}
3.16228 \times 10^{-1} & -1.0...
...\times 10^{-1} & 6.26144 \times 10^{-2}
\end{array} \right).
\end{displaymath}

                    


Susan Blackford 2001-08-19